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Motivation

Arithmetic on quantum computers: why do we care?

Efficiently-verifiable advantage,
using n = 1024 bit factoring

Shor’s algorithm: 1010+ gates

← Original x2 mod N proposal:
. 107 gates, 7000 qubits

x2 mod N with this result:
& 106 gates, 2000 qubits
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Multiplication on quantum computers

Today’s goal: implement the following unitaries

Uq×q |x〉 |y〉 |0〉 = |x〉 |y〉 |xy〉

Uc×q(a) |x〉 |0〉 = |x〉 |ax〉

... with as few gates and qubits as possible.
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Multiplication on quantum computers

Today’s goal: implement the following unitaries

Uq×q |x〉 |y〉 |w〉 = |x〉 |y〉 |w + xy〉

Uc×q(a) |x〉 |w〉 = |x〉 |w + ax〉

... with as few gates and qubits as possible.
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Background: schoolbook multiplication

The “schoolbook” method: xy =
∑

ij(2ixi)(2jyj) =
∑

ij 2i+jxiyj

1 1 0 1
× 1 0 1 0

1 0 1 0
1 0 1 0

+ 1 0 1 0
1 0 0 0 0 0 1 0

Running time: O(n2) operations
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Background: schoolbook multiplication

Given two n-bit numbers x and y, what if we use base b = 2n/2?

x1 x0
× y1 y0

x0y0
x1y0
x0y1

+ x1y1

xy = x1y1b2 + x0y1b+ x1y0b+ x0y0

Time remains O(n2), because 4(n/2)2 = n2
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Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0)− x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

Computational cost: 3(n/2)2 = 3
4n

2 = O(n2)

6



Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0)− x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

Computational cost: 3(n/2)2 = 3
4n

2 = O(n2)

6



Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0)− x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

Computational cost: 3(n/2)2 = 3
4n

2 = O(n2)

6



Background: Karatsuba multiplication

xy = x1y1b2 + (x0y1 + x1y0)b+ x0y0

Observation: x0y1 + x1y0 = (x1 + x0)(y1 + y0)− x1y1 − x0y0

Can compute xy with only three multiplications of size log b = n/2:

1. x1y1
2. x0y0
3. (x1 + x0)(y1 + y0)

Computational cost: 3(n/2)2 = 3
4n

2 = O(n2)

6



Background: Karatsuba multiplication

x

y

x0

y0

x1

y1

x0+x1

y0+y1

Depth: d = log2 n

Operations: 3d

Cost: O(nlog2 3) = O(n1.58···)
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Background: Karatsuba multiplication

Question: why don’t we always do this, classically?

Answer: the extra complexity isn’t always worth it!

... but for large enough values, it is

GNU multiple-precision arithmetic library cutoff: 2176 bit numbers
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Can these fast circuits be made quantum?

Challenge: making recursive algorithms reversible
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Work Qubits
Kowada et al. ’06 O(n1.58···)

Parent et al. ’18 O(n1.43···)
Gidney ’19 O(n)

Gidney ’19 requires over 12,000 ancilla
qubits for 2048-bit multiplication.
Is it possible to do better?
Result: Fast multiplication using 1 ancilla
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A fundamentally quantum way of doing arithmetic

[Draper ’04]: Arithmetic in Fourier space

|xy〉 = QFT−1
∑
z

exp

(
2πixyz
2n

)
|z〉

How to implement |x〉 |y〉 |0〉 → |x〉 |y〉 |xy〉?
1) Generate |x〉 |y〉

∑
z |z〉, 2) apply a phase rotation of exp

(
2πixyz
2n

)
, 3) apply QFT−1
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A fundamentally quantum way of doing arithmetic

How do we apply exp
(
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)
?
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∑
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=
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xi, yj, zk are binary values—apply phase only if they all are equal to 1!

A series of CCRφ gates between the bits of |x〉, |y〉, and |z〉!
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A fundamentally quantum way of doing arithmetic

exp

(
2πixyz
2n

)
=
∏
i,j,k

exp

(
2πi2i+j+k

2n
xiyjzk

)

The downside:

For n-bit numbers, this requires n3 gates!

A modest improvement: classical-quantum multiplication U(a) |x〉 |0〉 = |x〉 |ax〉

exp

(
2πiaxz
2n

)
=
∏
i,j

exp

(
2πia2i+j

2n
xizj
)

Here: O(n2) controlled phase rotations (matches Schoolbook algorithm)
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Fast quantum multiplication

Main question: Can we combine fast multiplication with
Fourier arithmetic to get the benefits of both?

13



Fast classical-quantum multiplication

Goal: U(a) |x〉 |0〉 = |x〉 |ax〉

We want to split the phase φxz into the sum of many phases, which are easy to implement.

Previously:
exp (iφxz) =

∏
i,j

exp
(
iφ2i+jxizj

)
How are we supposed to reuse values in the phase?
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φ1 = (2n − 2n/2)φ
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Recursion relation: T(n) = 3T(n/2)

⇒ O(nlog2 3) = O(n1.58···) gates!
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How many qubits do we need?

Splitting registers |x〉 → |x1〉 |x0〉 and |z〉 → |z1〉 |z0〉, can immediately do

• exp (iφ1x1z1)
• exp (iφ2x0z0)

What about exp (iφ3(x0 + x1)(z0 + z1))?

Use quantum addition circuits.

But, addition is reversible→ do it in-place! E.g. |x1〉 |x0〉 → |x1〉 |x0 + x1〉

Total number of ancillas: O(log n)
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How many qubits do we need?

Total number of ancillas: O(log n)
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Idea: “Shave off” the high bit before recursing
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How many qubits do we need?

Total number of ancillas: 2
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Making it go faster

So far: O(n1.58) gates using 1 ancilla

Can we make it go faster?
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Background: Toom-Cook multiplication

Let b = 2n/2.

x = x1b+ x0
z = z1b+ z0

x0

z0

n/2 bitsn/2 bits

x1

z1
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Background: Toom-Cook multiplication

Let b = 2n/k.

x =
k−1∑
i=0

xibi

z =
k−1∑
i=0

zibi

x0

n/k bits

z0

x1

n/k bits

z1

x2
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z2

xk-1
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zk-1
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Background: Toom-Cook multiplication

Let b = 2n/k.

xz =
(k−1∑
i=0

xibi
)(k−1∑

i=0

zibi
)

x0

n/k bits

z0

x1

n/k bits

z1

x2

n/k bits

z2

xk-1

n/k bits

zk-1

Schoolbook: k2 multiplications of size n/k
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Background: Toom-Cook multiplication

x(b) =
k−1∑
i=0

xibi

z(b) =
k−1∑
i=0

zibi

p(b) = x(b)z(b)

p(2n/k) = x(2n/k)z(2n/k)

Facts:

• For any point w, p(w) = x(w)z(w)
• p(b) has degree 2(k− 1)⇒ uniquely determined by q = 2(k− 1) + 1 points w`!
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Background: Toom-Cook multiplication

1. Compute x(w`), z(w`) at
q points w`

2. Pointwise multiply
3. Interpolate p(b)
4. Evaluate p(2n/k)

x0

n/k bits

z0

x1

n/k bits

z1

x2

n/k bits

z2

xk-1

n/k bits

zk-1

x(w0)
n/k bits

x(w1)
n/k bits n/k bits n/k bits

x(w2)

z(w0)

x(wq-2)

z(w1) z(w2) z(wq-2)

n/k bits

x(w2)

z(w2)

n/k bits

x(wq-1)

z(wq-1)

Only 2k− 1 multiplications of size n/k!

22



Background: Toom-Cook multiplication

1. Compute x(w`), z(w`) at
q points w`

2. Pointwise multiply

3. Interpolate p(b)
4. Evaluate p(2n/k)

x0

n/k bits

z0

x1

n/k bits

z1

x2

n/k bits

z2

xk-1

n/k bits

zk-1

x(w0)
n/k bits

x(w1)
n/k bits n/k bits n/k bits

x(w2)

z(w0)

x(wq-2)

z(w1) z(w2) z(wq-2)

n/k bits

x(w2)

z(w2)

n/k bits

x(wq-1)

z(wq-1)

Only 2k− 1 multiplications of size n/k!

22



Background: Toom-Cook multiplication

1. Compute x(w`), z(w`) at
q points w`

2. Pointwise multiply
3. Interpolate p(b)

4. Evaluate p(2n/k)

x0

n/k bits

z0

x1

n/k bits

z1

x2

n/k bits

z2

xk-1

n/k bits

zk-1

x(w0)
n/k bits

x(w1)
n/k bits n/k bits n/k bits

x(w2)

z(w0)

x(wq-2)

z(w1) z(w2) z(wq-2)

n/k bits

x(w2)

z(w2)

n/k bits

x(wq-1)

z(wq-1)

Only 2k− 1 multiplications of size n/k!

22



Background: Toom-Cook multiplication

1. Compute x(w`), z(w`) at
q points w`

2. Pointwise multiply
3. Interpolate p(b)
4. Evaluate p(2n/k)

x0

n/k bits

z0

x1

n/k bits

z1

x2

n/k bits

z2

xk-1

n/k bits

zk-1

x(w0)
n/k bits

x(w1)
n/k bits n/k bits n/k bits

x(w2)

z(w0)

x(wq-2)

z(w1) z(w2) z(wq-2)

n/k bits

x(w2)

z(w2)

n/k bits

x(wq-1)

z(wq-1)

Only 2k− 1 multiplications of size n/k!

22



Karatsuba in the language of Toom-Cook

Karatsuba is Toom-Cook with k = 2

x(b) = x1b+ x0
z(b) = z1b+ z0

p(b) = x(b)z(b) has degree 2

Let w ∈ {0,∞, 1}

x(0) = x0
x(∞) = x1
x(1) = x0 + x1
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Complexity vs. k

Toom-Cook has asymptotic complexity O(nlogk(2k−1))

Algorithm Gate count
Schoolbook O(n2)

k = 2 O(n1.58···)

k = 3 O(n1.46···)

k = 4 O(n1.40···)
...

...

These are the gate counts for our classical-quantum multiplication!
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Overhead moves to classical precomputation

1. Compute x(w`), z(w`) at
q points w`

2. Pointwise multiply
3. Interpolate p(b)
4. Evaluate p(2n/k)

x(w0)
n/k bits

x(w1)
n/k bits n/k bits n/k bits

x(w2)

z(w0)

x(wq-2)

z(w1) z(w2) z(wq-2)

n/k bits

x(w2)

z(w2)

n/k bits

x(wq-1)

z(wq-1)

φxz =
2k−2∑
`=0

φ`x(w`)z(w`) (1)

Much of the overhead has moved to classical precomputation!
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Fast quantum-quantum multiplication

Goal: U |x〉 |y〉 |0〉 = |x〉 |y〉 |xy〉

Previously:

exp (iφxyz) =
∏
i,j,k

exp
(
iφ2i+j+kxiyjzk

)
(n3 doubly-controlled phase rotations)

Question: How would you classically compute a triple product like xyz?

Answer: Use parentheses! xyz = x(yz). Then asymptotic cost is the same

Doesn’t work in the phase!!
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Goal: Apply phase exp
(
2πi
2n xyz
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Generalizing Toom-Cook

Goal: Compute xyz “all at once”

Before

p(b) = x(b)z(b)

p(b) has degree q = 2k− 1

Now

p(b) = x(b)y(b)z(b)

p(b) has degree q = 3k− 2

27



Generalizing Toom-Cook

Goal: Compute xyz “all at once”

Before

p(b) = x(b)z(b)

p(b) has degree q = 2k− 1

Now

p(b) = x(b)y(b)z(b)

p(b) has degree q = 3k− 2

27



Generalizing Toom-Cook

Goal: Compute xyz “all at once”

Before

p(b) = x(b)z(b)

p(b) has degree q = 2k− 1

Now

p(b) = x(b)y(b)z(b)

p(b) has degree q = 3k− 2

27



Example: Generalizing Karatsuba’s method

For k = 2, we have q = 4. Using wi ∈ {0,∞, 1,−1}:

xyz =(23n/2 − 2n/2)x1y1z1

+
1
2
(2n + 2n/2)(x0 + x1)(y0 + y1)(z0 + z1)

+
1
2
(2n − 2n/2)(x0 − x1)(y0 − y1)(z0 − z1)

+ (1− 2n)x0y0z0

Only 4 multiplications of length n/2 instead of 8!
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Example: Generalizing Karatsuba’s method

Only 4 multiplications of length n/2, instead of 8!

Recursion relation: T(n) ∼ 4T(n/2)

thus: T(n) = O(n2)

As before: k > 2 is faster.

k Gates O(nlogk(3k−2))

1∗ O(n3)
2 O(n2)
3 O(n1.77···)
4 O(n1.66···)

5 O(n1.59···)

6 O(n1.55···)
...

...

These runtimes are achieved with 2 ancilla qubits.
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Summary so far

• Circuits for phase rotations φxz or φxyz in sub-quadratic time, using 1 or 2 ancillas
respectively

• Sandwiched by QFTs, this implements multiplication

Next up:

• Sub-quadratic-time exact QFT with 1 ancilla
• Depth
• Modular multiplication
• Applications

• Shor’s algorithm
• Efficiently-verifiable quantum advantage
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Fast exact quantum Fourier transform

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFT2n :
1. Apply QFT2m on first m qubits
2. Apply phase rotation 2πxz/2n

• |x〉 is value of first m qubits
• |z〉 is value of final n−m qubits

3. Apply QFT2n−m on final n−m qubits

QFT2n QFT2n-1

PH
AS

E 
RO

TA
TI

O
N

S

H

Immediately gives us sub-quadratic exact QFT using only 1 ancilla.
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Depth considerations

Parallelization is natural.

We have k sub-registers to work
with—can do k sub-products in
parallel.

x

y

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0
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x0+x1

y0+y1

x0

y0
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y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

x0

y0

x1

y1

x0+x1

y0+y1

Depth: PhaseProduct in O(nlogk 2) and PhaseTripleProduct in O(nlogk 3)
using a few more ancillas
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Depth: PhaseProduct in O(nlogk 2) and PhaseTripleProduct in O(nlogk 3)
using a few more ancillas
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Depth considerations

Parallelization is natural.

We have k sub-registers to work
with—can do k sub-products in
parallel.
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Challenge for multiply: How to do the QFT in sublinear depth
with even O(n) ancillas?

32



Modular arithmetic

So far: have been using phase

exp
(
2πi xyz

2n
)

(denominator matches order of QFT)

Observation:
exp

(
2πi xyz

N

)
= exp

(
2πi (xy mod N)z

N

)
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Modular arithmetic

Goal: only use n bits for output modulo N

Observation:
exp

(
2πi xyz

N

)
= exp

(
2πi (xy mod N)z

N

)
Define

w =
xy mod N

N

Now, multiplication:
|x〉 |0〉 → |x〉 |w〉

Output register requires n+O(log(1/ε)) qubits
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Application: Shor’s algorithm

For Shor’s algorithm: O(n) modular classical-quantum multiplications

Using phase modulo and k = 4 multiplier:

Gates: O(n2.4)
Total qubits: 2n+O(log(n/ε))

(Here ε is error across the whole algorithm)
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Application: Shor’s algorithm

Cost estimates for one 2048-bit classical-quantum multiplication: (here not modular)

Gate count (millions)Algorithm Complexity
Toffoli CRφ Other

Ancilla qubits

This work O(n1.4) 0.6 0.9 2.1 50
Karatsuba [1] O(n1.58) 5.6 — 34 12730
Windowed [1] O(n2) 1.8 — 2.5 4106
Schoolbook [1] O(n2) 6.4 — 38 2048∗

(Note: ∼ 15% of the CRφ come from approximate QFTs with ε = 10−12)

Open q.: Can we use windowing with our construction?

[1] C. Gidney, “Windowed quantum arithmetic.” (arXiv:1905.07682)
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Application: efficiently-verifiable quantum advantage

Protocol for a “proof of quantumness” requires evaluating f (x) = x2 mod N

Cost estimates for protocol with 1024-bit N:

Gate count (millions)
Algorithm

Toffoli C∗Rφ Other
Total qubits

Gate optimized 0.7 0.9 0.7 2400
Balanced 0.9 1.0 0.9 2070

Qubit optimized 2.2 2.0 2.2 1560
“Digital” Karatsuba [2] 1.6 — 1.6 6801
“Digital” Schoolbook [2] 3.5 — 2.9 4097
Prev. Fourier 1 [2] — 539 — 1025
Prev. Fourier 2 [2] — 35 — 2062

[2] GDKM, Choi, Vazirani, Yao. “Efficiently-verifiable quantum advantage from a computational Bell test.” (arXiv:2104.00687)

37



Application: efficiently-verifiable quantum advantage

Protocol for a “proof of quantumness” requires evaluating f (x) = x2 mod N

Cost estimates for protocol with 1024-bit N:

Gate count (millions)
Algorithm

Toffoli C∗Rφ Other
Total qubits

Gate optimized 0.7 0.9 0.7 2400
Balanced 0.9 1.0 0.9 2070

Qubit optimized 2.2 2.0 2.2 1560
“Digital” Karatsuba [2] 1.6 — 1.6 6801
“Digital” Schoolbook [2] 3.5 — 2.9 4097
Prev. Fourier 1 [2] — 539 — 1025
Prev. Fourier 2 [2] — 35 — 2062

[2] GDKM, Choi, Vazirani, Yao. “Efficiently-verifiable quantum advantage from a computational Bell test.” (arXiv:2104.00687)

37



Summary

Classical-quantum
1 ancilla qubit
k Gates
2 O(n1.58···)

3 O(n1.46···)

4 O(n1.40···)
...

...

Quantum-quantum
2 ancilla qubits
k Gates
2 O(n2)
3 O(n1.77···)
4 O(n1.66···)
...

...

Implications:

Shor’s algorithm: O(n2.4) gates using
2n+O(log n) qubits

Exact QFT in O(n1.4) gates using 1 ancilla

In practice:

Low overheads—circuits are useful at
practical sizes

Low crossover—in some cases, already faster
for 20 bit inputs!
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Open Questions

• Can multiplication modN be performed with O(1) ancillas?

• Can QFT be done in sub-linear depth without needing a lot of ancillas?
• Can we do any of these things with zero ancillas?
• Can this technique be applied to e.g. the O(n log n log log n) Schonhage-Strassen
algorithm?

• How well can we optimize explicit circuits (especially the base case)?

Thank you!
Greg Kahanamoku-Meyer — gkm@berkeley.edu
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Backup

40



What about all the arbitrary rotation gates?

In error-corrected setting, arbitrary rotation gates need to be synthesized.

Idea: “convert” some rotation gates into e.g. Toffolis; easier to synthesize

All rotations are in the base case: 32-bit (say) PhaseProduct φx′z′

Direct (schoolbook)
Apply 322 = 1024 CRφ gates

CRφ optimized
1. Compute |x′z′〉 via a regular digital
multiplier circuit

2. Apply phase rotations on the output
3. Uncompute |x′z′〉

1024 CRφ → 64 Rφ plus ∼ 2048 Toffoli
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Fast classical-quantum multiplication: algorithm

PhaseProduct(φ, |x〉 , |z〉)

Input: Quantum state |x〉 |z〉, classical value φ

Output: Quantum state exp(iφxz) |x〉 |z〉

1. Split |x〉 and |z〉 in half, as |x1〉 |x0〉 and |z1〉 |z0〉
2. Apply PhaseProduct((2n − 2n/2)φ, |x1〉 , |z1〉)
3. Apply PhaseProduct((1− 2n/2)φ, |x0〉 , |z0〉)
4. Add |x1〉 to |x0〉, and |z1〉 to |z0〉. Registers now hold |x1〉 |x0 + x1〉 |z1〉 |z0 + z1〉.
5. Apply PhaseProduct(2n/2φ, |x0 + x1〉 , |z0 + z1〉).
6. Subtract |x1〉, |z1〉 to return to registers to |x1〉 |x0〉 |z1〉 |z0〉.
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