
Cryptographic protocols for classically-
verifiable quantum advantage and more

Gregory D. Kahanamoku-Meyer

10100111100
11010110011
11101100100
10011000011

March 1, 2023



About me

• PhD Candidate at UC Berkeley,
graduating this summer

• Advised by Norman Yao, Physics
(now at Harvard)

• Co-advised by Umesh Vazirani, CS

2



About me

• PhD Candidate at UC Berkeley,
graduating this summer

• Advised by Norman Yao, Physics
(now at Harvard)

• Co-advised by Umesh Vazirani, CS

2



About me

• PhD Candidate at UC Berkeley,
graduating this summer

• Advised by Norman Yao, Physics
(now at Harvard)

• Co-advised by Umesh Vazirani, CS

2



About me

• PhD Candidate at UC Berkeley,
graduating this summer

• Advised by Norman Yao, Physics
(now at Harvard)

• Co-advised by Umesh Vazirani, CS
high-performance

computing
quantum

2



About me

• PhD Candidate at UC Berkeley,
graduating this summer

• Advised by Norman Yao, Physics
(now at Harvard)

• Co-advised by Umesh Vazirani, CS high-performance
computing

quantum

https://dynamite.readthedocs.io

2



About me

• PhD Candidate at UC Berkeley,
graduating this summer

• Advised by Norman Yao, Physics
(now at Harvard)

• Co-advised by Umesh Vazirani, CS high-performance
computing

quantum

cryptography

https://dynamite.readthedocs.io

Accelerating post-quantum

cryptanalysis with GPUsCr
yp

to
gr

ap
hi

c p
ro

to
co

ls

fo
r q

ua
nt

um
 a

dv
an

ta
ge

2



Quantum computational advantage

Recent sampling-based demonstrations:

Random circuit sampling
[Arute et al., Nature '19]

Gaussian boson sampling
[Zhong et al., Science '20]

...

Biggest experiments impossible to classically simulate—how do we verify the output?

“[Rule] out alternative [classical] hypotheses” [Zhong et al.]

Quantum is the only reasonable explanation for observed behavior,
under some assumptions about the inner workings of the device
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“Black-box” quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

Goals: 1) efficient classical verification, 2) classical hardness from cryptography
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Local: robust demonstration of the 
power of quantum computation

"Qubits prove their power to humanity"

Reframing: disprove null hypothesis that output was generated classically.
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Noisy intermediate scale verifiable quantum advantage

Trivial solution: Shor’s algorithm

... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices
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Adding structure to sampling problems

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2008]: Can hide a secret in H, such that evolving and sampling gives
results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure opens opportunities for classical cheating
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Noisy intermediate scale verifiable quantum advantage
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Making number theoretic problems less costly

Fully solving a problem like factoring is “overkill”

Can we demonstrate quantum capability without needing to solve such a hard problem?
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Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)
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Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier
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Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in specific basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)
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Hardness proof: rewinding
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measurement

commitment

Prover Verifier

...

From a “proof of hardness” perspective:

• Classical cheater can be “rewound”
• Save state of prover after first round of interaction
• Extract measurement results in all choices of basis

• Quantum prover’s measurements are irreversible

“Rewinding” proof of hardness doesn’t go through for quantum prover—can even use
functions that are quantum claw-free!
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State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).
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Evaluate f on uniform superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉+ |x1〉) |y〉
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State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!
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Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

Function is actually 4-to-1 but collisions like {x,−x} are trivial—set domain to integers in
range [0,N/2].

Properties:

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring

• Trapdoor: Function is easily inverted with knowledge of p,q

Example: 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7
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Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18
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Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Z basis: get x0 or x1

X basis: get some bitstring d, such that d · x0 = d · x1
Hardness of finding (x0, x1) does not imply hardness of measurement results!

arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082
15
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Trapdoor claw-free functions

Function family Trapdoor Claw-free Strong claw-free
Learning-with-Errors [1] 3 3 3

Ring Learning-with-Errors [2] 3 3 7

x2 mod N [3] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model?

Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Interactive measurement: computational Bell test

Two-step process: “condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

Evaluate f coherently:
∑

x |x〉 |f (x)〉
f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

|x0〉 |x0 · r0〉+ |x1〉 |x1 · r1〉
r0,r1←−−−−−−−−−−−−−− Pick random bitstrings r0, r1

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Now 1-qubit state: |0〉 or |1〉 if x0 · r0 = x1 · r1, otherwise |+〉 or |−〉. Polarization hidden via:
Cryptographic secret (here)⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Brakersi, Gheorghiu, GDKM, Porat, Vidick ’23 (will be on arXiv imminently!) 17
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Computational Bell test: classical bound

Let p be the probability that the prover succeeds in a single iteration of the protocol.

Under assumption of claw-free function:

Classical bound: p ≤ 3/4+ ε

Ideal quantum: p = cos2(π/8) ≈ 0.853

Just like a Bell test!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Brakersi, Gheorghiu, GDKM, Porat, Vidick ’23 (will be on arXiv imminently!)
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Overview: efficiently verifiable quantum advantage protocol

• Existing experiments (e.g. random circuits) not verifiable at scale

• Shor’s alg. (and others) verifiable, but not feasible on near-term devices
• Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of
factoring, without full machinery of Shor

• Result: new protocol that allows proof of quantumness using any trapdoor claw-free
function, including x2 mod N

Asymptotically: evaluating x2 mod N requires O(n log n) gates;
ax mod N in Shor requires O(n2 log n)

(can also use other TCFs)

Next up: tricks for the near term

19
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Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits (but no feed forward needed!)

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]
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Error mitigation via postselection

How to deal with high fidelity requirement? Naively need ∼ 71% overall circuit fidelity to
pass.

A prover holding (|x0〉+ |x1〉) |y〉 with only ε phase coherence passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip error detection!
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Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of strong claw-free property helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!
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Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?
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When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Lots of time and space overhead!

Can we “measure them away” instead?
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Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
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Bonus: more efficient gate decomposition

Can replace multi-qubit gates with ones that are equivalent up to phase flips!

Example: decomposing Toffoli into CNOTs + single qubit gates

T
=

H T T T H

T
T
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Example: decomposing Toffoli into CNOTs + single qubit gates

=
AA A A

A =~
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Summary + challenge

Rules of the game:

• Goal: implement x2 mod N, with N of 1024 bits, as efficiently as possible

• You can discard and recycle ancillas whenever you want
• Relative phase flips are OK too

My implementation: a few thousand qubits, a few thousand depth.
I bet we can do better!
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Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

Without post-quantum cryptography: not really

If TCF is quantum secure, the the prover must make anticommuting measurements

Takeaway: protocol can “certify a qubit”

Implications:

• Certifiable randomness generation (Merkulov + Arnon-Friedman, also about to post!)
• (likely) Remote state preparation
• (likely) Classical, cryptographic verification of remote quantum computation!
(cf. Natarajan + Zhang, also about to post!)
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Looking forward

Interactive cryptographic protocols:

• Near term: Classically-verifiable quantum advantage
• Longer term: cryptographic applications!

Improving implementation of the protocol:

• My current best: a few thousand qubits and a few thousand depth
• How far can we improve on that?
• x2 mod N requires at minimum ∼ 1000 qubits for classical hardness—search for new
claw-free functions?

Improving the protocols:

• Yamakawa, Zhandry: “Verifiable q. adv. without structure” (arXiv:2204.02063)
• KLVY: “Quantum advantage from any non-local game” (arXiv:2203.15877)
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Questions?

Gregory D. Kahanamoku-Meyer

10100111100
11010110011
11101100100
10011000011

https://gregdmeyer.github.io/

"Classically verifiable quantum advantage from a computational Bell test"

"Simple tests of quantumness also certify qubits" [on arXiv soon!]

[arXiv:2104.00687]

Norman Yao Soonwon Choi Umesh Vazirani

Zvika Brakerski Andru Gheorghiu Thomas VidickEitan Porat



Backup!
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Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

arXiv:1804.00640
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Interactive measurement: computational Bell test

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Measure qubit in basis basis←−−−−−−−−−−−−−− Pick (Z + X) or (Z − X) basis
result−−−−−−−−−−−−−−→ Validate against r, x0, x1, d

In this case, 1-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉.

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pBell: Success rate when performing Bell-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pBell . 4
Ideal quantum: pZ = 1,pBell = cos2(π/8)

pZ + 4pBell = 3+
√
2 ≈ 4.414

Note: Let pZ = 1. Then for pBell:
Classical bound 75%, ideal quantum ∼ 85%.

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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The CHSH game (Bell test)

Cooperative two-player game; players can’t communicate (non-local).

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Classical optimal strategy: return equal values, hope you didn’t both get heads. 75%
success rate.

Can we do better with entanglement?
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Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First proof-of-concept demonstration of these protocols, in trapped ions!
(arXiv:2112.05156)

Prof. Christopher MonroeDr. Daiwei Zhu Prof. Crystal Noel

and others!
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Interactive proofs on a few qubits

Experimental results for f (x) = x2 mod N

Up and right is stronger evidence of
quantumness

GDKM, D. Zhu, et al. (arXiv:2112.05156)
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Quantum circuits for x2 mod N

Goal: U |x〉 |0〉 = |x〉
∣∣x2 mod N

〉

Idea: do something really quantum: compute function in phase!

Decompose this as
U = (I⊗ IQFTN) · Ũ · (I⊗QFTN)

with
Ũ |x〉 |z〉 = exp

(
2πi x

2

N
z
)
|x〉 |z〉

Advantages:

• Everything is diagonal (it’s just a phase)!
• Modulo is automatic in the phase
• Simple decomposition into few-qubit gates
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Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

Decompose using “grade school” integer multiplication:

a · b =
∑
i,j

2i+jaibj

x2z =
∑
i,j,k

2i+j+kxixjzk

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)
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• Binary multiplication is AND

• “Apply phase whenever xi = xj = zk = 1”
• These are CCPhase gates (of arb. phase)!
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Leveraging the Rydberg blockade

QFT Ũ IQFT
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Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group G of order N, with generator g.
Given the tuple (g,ga,gb,gc), determine if c = ab.

Elliptic curve crypto.: logN ∼ 160 bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters ’08; Freeman et al. ’10]: linear algebra in the exponent

Claw-free [GDKM et al. ’21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!
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Full protocol
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