Cryptographic protocols for classicallyverifiable quantum advantage and more

Gregory D. Kahanamoku-Meyer March 1, 2023

About me

- PhD Candidate at UC Berkeley, graduating this summer

About me

- PhD Candidate at UC Berkeley, graduating this summer
- Advised by Norman Yao, Physics (now at Harvard)

About me

- PhD Candidate at UC Berkeley, graduating this summer
- Advised by Norman Yao, Physics (now at Harvard)
- Co-advised by Umesh Vazirani, CS

About me

- PhD Candidate at UC Berkeley, graduating this summer
- Advised by Norman Yao, Physics (now at Harvard)
- Co-advised by Umesh Vazirani, CS

About me

- PhD Candidate at UC Berkeley, graduating this summer
- Advised by Norman Yao, Physics (now at Harvard)
- Co-advised by Umesh Vazirani, CS

About me

- PhD Candidate at UC Berkeley, graduating this summer
- Advised by Norman Yao, Physics (now at Harvard)
- Co-advised by Umesh Vazirani, CS

Quantum computational advantage

Recent sampling-based demonstrations:

Random circuit sampling
[Arute et al., Nature '19]

Gaussian boson sampling
[Zhong et al., Science '20]

Quantum computational advantage

Recent sampling-based demonstrations:

Random circuit sampling
[Arute et al., Nature '19]

Gaussian boson sampling
[Zhong et al., Science '20]

Biggest experiments impossible to classically simulate

Quantum computational advantage

Recent sampling-based demonstrations:

Random circuit sampling
[Arute et al., Nature '19]

Gaussian boson sampling
[Zhong et al., Science '20]

Biggest experiments impossible to classically simulate-how do we verify the output?

Quantum computational advantage

Recent sampling-based demonstrations:

Random circuit sampling
[Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Biggest experiments impossible to classically simulate-how do we verify the output?
"[Rule] out alternative [classical] hypotheses" [Zhong et al.]

Quantum computational advantage

Recent sampling-based demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Biggest experiments impossible to classically simulate-how do we verify the output?
"[Rule] out alternative [classical] hypotheses" [Zhong et al.]
Quantum is the only reasonable explanation for observed behavior, under some assumptions about the inner workings of the device

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!
Goals: 1) efficient classical verification, 2) classical hardness from cryptography

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!
Goals: 1) efficient classical verification, 2) classical hardness from cryptography

Local: robust demonstration of the power of quantum computation
"Qubits prove their power to humanity"

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!
Goals: 1) efficient classical verification, 2) classical hardness from cryptography

Local: robust demonstration of the power of quantum computation
"Qubits prove their power to humanity"

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!
Goals: 1) efficient classical verification, 2) classical hardness from cryptography

Local: robust demonstration of the power of quantum computation
"Qubits prove their power to humanity"

Reframing: disprove null hypothesis that output was generated classically.

Noisy intermediate scale verifiable quantum advantage

Trivial solution: Shor's algorithm

Noisy intermediate scale verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

Noisy intermediate scale verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

Sampling problems

Number theory problems

e.g. random circuits, Boson sampling, ..
\checkmark NISQ feasible
x Efficiently verifiable
e.g. factoring, discrete logarithm, ...
x NISQ feasible
\checkmark Efficiently verifiable

???
\checkmark NISQ feasible
\checkmark Efficiently verifiable

Adding structure to sampling problems

Example: sampling "IQP" circuits (products of Pauli X's)

$$
\begin{equation*}
H=X_{0} x_{1} x_{3}+X_{1} x_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

Adding structure to sampling problems

Example: sampling "IQP" circuits (products of Pauli X's)

$$
\begin{equation*}
H=X_{0} X_{1} x_{3}+X_{1} X_{2} X_{4} x_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2008]: Can hide a secret in H, such that evolving and sampling gives results correlated with secret

Adding structure to sampling problems

Example: sampling "IQP" circuits (products of Pauli X's)

$$
\begin{equation*}
H=X_{0} X_{1} x_{3}+X_{1} X_{2} X_{4} x_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2008]: Can hide a secret in H, such that evolving and sampling gives results correlated with secret
[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

Adding structure to sampling problems

Example: sampling "IQP" circuits (products of Pauli X's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2008]: Can hide a secret in H, such that evolving and sampling gives results correlated with secret
[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard [GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure to sampling problems

Example: sampling "IQP" circuits (products of Pauli X's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2008]: Can hide a secret in H , such that evolving and sampling gives results correlated with secret
[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard [GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure opens opportunities for classical cheating

Noisy intermediate scale verifiable quantum advantage

Sampling problems

Number theory problems
e.g. random circuits, Boson sampling, ..
e.g. factoring, discrete logarithm, ...
\checkmark NISQ feasible
x Efficiently verifiable
x NISQ feasible
\checkmark Efficiently verifiable

\checkmark NISQ feasible
\checkmark Efficiently verifiable

Making number theoretic problems less costly

Fully solving a problem like factoring is "overkill"

Making number theoretic problems less costly

Fully solving a problem like factoring is "overkill"
Can we demonstrate quantum capability without needing to solve such a hard problem?

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?
without ever telling you the colors?

1. You show them one ball, then hide it behind your back

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50\% chance of passing-iterate for exponential certainty.

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing-iterate for exponential certainty.
This constitutes a zero-knowledge interactive proof.

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

This constitutes a zero-knowledge interactive proof.

$$
\begin{aligned}
& \text { You (color blind) } \Leftrightarrow \text { Classical verifier } \\
& \text { Seeing color } \Leftrightarrow \text { Quantum capability }
\end{aligned}
$$

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?
without ever telling you the colors?

This constitutes a zero-knowledge interactive proof.

$$
\begin{aligned}
& \text { You (color blind) } \Leftrightarrow \text { Classical verifier } \\
& \text { Seeing color } \Leftrightarrow \text { Quantum capability }
\end{aligned}
$$

Goal: find protocol as verifiable and classically hard as factoringbut less expensive than actually finding factors (via Shor)

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to holding a specific quantum state
Round 2: Verifier asks for measurement in specific basis, prover performs it

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to holding a specific quantum state
Round 2: Verifier asks for measurement in specific basis, prover performs it

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640).
Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

Hardness proof: rewinding

From a "proof of hardness" perspective:

Hardness proof: rewinding

Verifier

10100111100
11010110011
11101100100
10011000011

From a "proof of hardness" perspective:

- Classical cheater can be "rewound"
- Save state of prover after first round of interaction
- Extract measurement results in all choices of basis

Hardness proof: rewinding

Verifier

10100111100
11010110011
11101100100
10011000011

From a "proof of hardness" perspective:

- Classical cheater can be "rewound"
- Save state of prover after first round of interaction
- Extract measurement results in all choices of basis
- Quantum prover's measurements are irreversible

Hardness proof: rewinding

From a "proof of hardness" perspective:

- Classical cheater can be "rewound"
- Save state of prover after first round of interaction
- Extract measurement results in all choices of basis
- Quantum prover's measurements are irreversible
"Rewinding" proof of hardness doesn't go through for quantum prover-can even use functions that are quantum claw-free!

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

Prover has committed to the state $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

State commitment (round 1): trapdoor claw-free functions

```
Prover has committed to (|\mp@subsup{x}{0}{}\rangle+|\mp@subsup{x}{1}{}\rangle)|y\rangle\mathrm{ with }y=f(\mp@subsup{x}{0}{})=f(\mp@subsup{x}{1}{})
```

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses superposition + wavefunction collapse-inherently quantum!

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Properties:

- Claw-free: Easy to compute p, q given a colliding pair-thus finding collisions is as hard as factoring

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Properties:

- Claw-free: Easy to compute p, q given a colliding pair-thus finding collisions is as hard as factoring
- Trapdoor: Function is easily inverted with knowledge of p, q

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Properties:

- Claw-free: Easy to compute p, q given a colliding pair-thus finding collisions is as hard as factoring
- Trapdoor: Function is easily inverted with knowledge of p, q

Example: $4^{2} \equiv 11^{2} \equiv 16(\bmod 35) ;$ and $11-4=7$

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Evaluate f on uniform superposition:
$\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Pick trapdoor claw-free function f
\xrightarrow{y} Compute x_{0}, x_{1} from y using trapdoor

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Pick trapdoor claw-free function f
 Compute x_{0}, x_{1} from y using trapdoor
\qquad Pick Z or X basis
\qquad Validate result against x_{0}, x_{1}

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Pick trapdoor claw-free function f
\qquad Compute x_{0}, x_{1} from y using trapdoor Pick Z or X basis
\qquad $\longrightarrow \quad$ Validate result against x_{0}, x_{1}
Z basis: get x_{0} or x_{1}
arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

 - Pick trapdoor claw-free function f
 Compute x_{0}, x_{1} from y using trapdoor Pick Z or X basis

\qquad
\qquad $\longrightarrow \quad$ Validate result against x_{0}, x_{1}
Z basis: get x_{0} or x_{1}
X basis: get some bitstring d, such that $d \cdot x_{0}=d \cdot x_{1}$ Hardness of finding $\left(x_{0}, x_{1}\right)$ does not imply hardness of measurement results!
arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Pick trapdoor claw-free function f
 Compute x_{0}, x_{1} from y using trapdoor
\qquad Pick Z or X basis
\qquad Validate result against x_{0}, x_{1}

Hardness of finding $\left(x_{0}, x_{1}\right)$ does not imply hardness of measurement results!

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	x
x^{2} mod $N[3]$	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	x
$x^{2} \bmod N[3]$	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

BKWV '20 removes need for strong claw-free property in the random oracle model. [2]
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	\times
$x^{2} \bmod N[3]$	\checkmark	\checkmark	\times
Diffie-Hellman [3]	\checkmark	\checkmark	\times

BKWV '20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model?
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	\times
$x^{2} \bmod N[3]$	\checkmark	\checkmark	\times
Diffie-Hellman [3]	\checkmark	\checkmark	\times

BKWV '20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model? Yes! [3]
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Evaluate f coherently: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y

Pick trapdoor claw-free function f Compute x_{0}, x_{1} from y using trapdoor

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Evaluate f coherently: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y
$\left|x_{0}\right\rangle\left|x_{0} \cdot r_{0}\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r_{1}\right\rangle$
Measure all but ancilla in X basis

Pick trapdoor claw-free function f Compute x_{0}, x_{1} from y using trapdoor

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Evaluate f coherently: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Pick trapdoor claw-free function f Compute x_{0}, x_{1} from y using trapdoor
$\left|x_{0}\right\rangle\left|x_{0} \cdot r_{0}\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r_{1}\right\rangle$
Measure all but ancilla in X basis
 Pick random bitstrings r_{0}, r_{1}

Now 1-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r_{0}=x_{1} \cdot r_{1}$, otherwise $|+\rangle$ or $|-\rangle$.

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Evaluate f coherently: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Pick trapdoor claw-free function f Compute x_{0}, x_{1} from y using trapdoor

$$
\left|x_{0}\right\rangle\left|x_{0} \cdot r_{0}\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r_{1}\right\rangle
$$

Measure all but ancilla in X basis
 Pick random bitstrings r_{0}, r_{1}

Now 1-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r_{0}=x_{1} \cdot r_{1}$, otherwise $|+\rangle$ or $|-\rangle$. Polarization hidden via: Cryptographic secret (here) \Leftrightarrow Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)
Brakersi, Gheorghiu, GDKM, Porat, Vidick '23 (will be on arXiv imminently!)

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Evaluate f coherently: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y
 Pick trapdoor claw-free function f Compute x_{0}, x_{1} from y using trapdoor
$\left|x_{0}\right\rangle\left|x_{0} \cdot r_{0}\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r_{1}\right\rangle$
Measure all but ancilla in X basis

Pick random bitstrings r_{0}, r_{1}

Measure qubit in basis Pick $(Z+X)$ or $(Z-X)$ basis
\square Validate against $r_{0}, r_{1}, x_{0}, x_{1}, d$

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Evaluate f coherently: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y
 Pick trapdoor claw-free function f Compute x_{0}, x_{1} from y using trapdoor
$\left|x_{0}\right\rangle\left|x_{0} \cdot r_{0}\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r_{1}\right\rangle$
Measure all but ancilla in X basis
d
\qquad

Pick random bitstrings r_{0}, r_{1}

Pick $(Z+X)$ or $(Z-X)$ basis Validate against $r_{0}, r_{1}, x_{0}, x_{1}, d$

Computational Bell test: classical bound

Let p be the probability that the prover succeeds in a single iteration of the protocol. Under assumption of claw-free function:

$$
\text { Classical bound: } p \leq 3 / 4+\epsilon
$$

Computational Bell test: classical bound

Let p be the probability that the prover succeeds in a single iteration of the protocol. Under assumption of claw-free function:

Classical bound: $p \leq 3 / 4+\epsilon$
Ideal quantum: $p=\cos ^{2}(\pi / 8) \approx 0.853$

Computational Bell test: classical bound

Let p be the probability that the prover succeeds in a single iteration of the protocol. Under assumption of claw-free function:

Classical bound: $p \leq 3 / 4+\epsilon$
Ideal quantum: $p=\cos ^{2}(\pi / 8) \approx 0.853$

Just like a Bell test!

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)
Brakersi, Gheorghiu, GDKM, Porat, Vidick '23 (will be on arXiv imminently!)

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale
- Shor's alg. (and others) verifiable, but not feasible on near-term devices

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor
- Result: new protocol that allows proof of quantumness using any trapdoor claw-free function, including $x^{2} \bmod N$

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor
- Result: new protocol that allows proof of quantumness using any trapdoor claw-free function, including $x^{2} \bmod N$

Asymptotically: evaluating $x^{2} \bmod N$ requires $\mathcal{O}(n \log n)$ gates;
$a^{x} \bmod N$ in Shor requires $\mathcal{O}\left(n^{2} \log n\right)$
(can also use other TCFs)

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor
- Result: new protocol that allows proof of quantumness using any trapdoor claw-free function, including $x^{2} \bmod N$

Asymptotically: evaluating $x^{2} \bmod N$ requires $\mathcal{O}(n \log n)$ gates;
$a^{x} \bmod N$ in Shor requires $\mathcal{O}\left(n^{2} \log n\right)$
(can also use other TCFs)

Next up: tricks for the near term

Moving towards efficiently-verifiable quantum advantage in the near term

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]

Fidelity (without error correction)
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]

Circuit sizes
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]

Circuit sizes

- Removing need for strong claw-free property allows use of "easier" functions
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits (but no feed forward needed!)
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]

Circuit sizes

- Removing need for strong claw-free property allows use of "easier" functions
- Measurement-based uncomputation scheme [2]
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Error mitigation via postselection

How to deal with high fidelity requirement? Naively need $\sim 71 \%$ overall circuit fidelity to pass.

Error mitigation via postselection

How to deal with high fidelity requirement? Naively need $\sim 71 \%$ overall circuit fidelity to pass.

A prover holding $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with only ϵ phase coherence passes!

Error mitigation via postselection

How to deal with high fidelity requirement? Naively need $\sim 71 \%$ overall circuit fidelity to pass.

A prover holding $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with only ϵ phase coherence passes! When we generate $\sum_{x}|x\rangle|f(x)\rangle$, add redundancy to $f(x)$, for bit flip error detection!

Error mitigation via postselection

How to deal with high fidelity requirement? Naively need $\sim 71 \%$ overall circuit fidelity to pass.

Numerical results for $x^{2} \bmod N$ with $\log N=512$ bits.
Here: make transformation $x^{2} \bmod N \Rightarrow(k x)^{2} \bmod k^{2} N$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of strong claw-free property helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of strong claw-free property helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$
but they are recursive and hard to make reversible.

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of strong claw-free property helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$ but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity

Classical AND

Quantum AND (Toffoli)

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

$$
\begin{array}{ll}
|x\rangle \equiv & \equiv|x\rangle \\
|0\rangle \equiv \mathcal{U}_{f}^{\prime} & \equiv\left|g_{f}(x)\right\rangle \\
|0\rangle \equiv & \\
& =|f(x)\rangle
\end{array}
$$

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Lots of time and space overhead!

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Can we "measure them away" instead?

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum!

Bonus: more efficient gate decomposition

Can replace multi-qubit gates with ones that are equivalent up to phase flips!

Bonus: more efficient gate decomposition

Can replace multi-qubit gates with ones that are equivalent up to phase flips! Example: decomposing Toffoli into CNOTs + single qubit gates

Bonus: more efficient gate decomposition

Can replace multi-qubit gates with ones that are equivalent up to phase flips! Example: decomposing Toffoli into CNOTs + single qubit gates

Summary + challenge

Rules of the game:

- Goal: implement $x^{2} \bmod N$, with N of 1024 bits, as efficiently as possible

Summary + challenge

Rules of the game:

- Goal: implement $x^{2} \bmod N$, with N of 1024 bits, as efficiently as possible
- You can discard and recycle ancillas whenever you want

Summary + challenge

Rules of the game:

- Goal: implement $x^{2} \bmod N$, with N of 1024 bits, as efficiently as possible
- You can discard and recycle ancillas whenever you want
- Relative phase flips are OK too

Summary + challenge

Rules of the game:

- Goal: implement $x^{2} \bmod N$, with N of 1024 bits, as efficiently as possible
- You can discard and recycle ancillas whenever you want
- Relative phase flips are OK too

Summary + challenge

Rules of the game:

- Goal: implement $x^{2} \bmod N$, with N of 1024 bits, as efficiently as possible
- You can discard and recycle ancillas whenever you want
- Relative phase flips are OK too

My implementation: a few thousand qubits, a few thousand depth.

Summary + challenge

Rules of the game:

- Goal: implement $x^{2} \bmod N$, with N of 1024 bits, as efficiently as possible
- You can discard and recycle ancillas whenever you want
- Relative phase flips are OK too

My implementation: a few thousand qubits, a few thousand depth. I bet we can do better!

Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

Without post-quantum cryptography: not really

Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

New results: Brakersi, Gheorghiu, GDKM, Porat, Vidick '23 (will be on arXiv imminently!) If TCF is quantum secure, the the prover must make anticommuting measurements

Takeaway: protocol can "certify a qubit"

Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

New results: Brakersi, Gheorghiu, GDKM, Porat, Vidick '23 (will be on arXiv imminently!) If TCF is quantum secure, the the prover must make anticommuting measurements

Takeaway: protocol can "certify a qubit"

Implications:

- Certifiable randomness generation (Merkulov + Arnon-Friedman, also about to post!)

Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

New results: Brakersi, Gheorghiu, GDKM, Porat, Vidick '23 (will be on arXiv imminently!) If TCF is quantum secure, the the prover must make anticommuting measurements

Takeaway: protocol can "certify a qubit"

Implications:

- Certifiable randomness generation (Merkulov + Arnon-Friedman, also about to post!)
- (likely) Remote state preparation

Beyond quantum advantage

Can we say anything about how the quantum prover won the game?

New results: Brakersi, Gheorghiu, GDKM, Porat, Vidick '23 (will be on arXiv imminently!) If TCF is quantum secure, the the prover must make anticommuting measurements

Takeaway: protocol can "certify a qubit"

Implications:

- Certifiable randomness generation (Merkulov + Arnon-Friedman, also about to post!)
- (likely) Remote state preparation
- (likely) Classical, cryptographic verification of remote quantum computation! (cf. Natarajan + Zhang, also about to post!)

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

- My current best: a few thousand qubits and a few thousand depth

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

- My current best: a few thousand qubits and a few thousand depth
- How far can we improve on that?

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

- My current best: a few thousand qubits and a few thousand depth
- How far can we improve on that?
- $x^{2} \bmod N$ requires at minimum ~ 1000 qubits for classical hardness-search for new claw-free functions?

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

- My current best: a few thousand qubits and a few thousand depth
- How far can we improve on that?
- $x^{2} \bmod N$ requires at minimum ~ 1000 qubits for classical hardness-search for new claw-free functions?

Improving the protocols:

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

- My current best: a few thousand qubits and a few thousand depth
- How far can we improve on that?
- $x^{2} \bmod N$ requires at minimum ~ 1000 qubits for classical hardness-search for new claw-free functions?

Improving the protocols:

- Yamakawa, Zhandry: "Verifiable q. adv. without structure" (arXiv:2204.02063)

Looking forward

Interactive cryptographic protocols:

- Near term: Classically-verifiable quantum advantage
- Longer term: cryptographic applications!

Improving implementation of the protocol:

- My current best: a few thousand qubits and a few thousand depth
- How far can we improve on that?
- $x^{2} \bmod N$ requires at minimum ~ 1000 qubits for classical hardness-search for new claw-free functions?

Improving the protocols:

- Yamakawa, Zhandry: "Verifiable q. adv. without structure" (arXiv:2204.02063)
- KLVY: "Quantum advantage from any non-local game" (arXiv:2203.15877)

Questions?

"Classically verifiable quantum advantage from a computational Bell test"

Gregory D. Kahanamoku-Meyer
https://gregdmeyer.github.io/

Backup!

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

10100111100
 11010110011
 11101100100

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y
Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Interactive measurement: computational Bell test

$$
\begin{aligned}
& 10100111100 \\
& 11010110011 \\
& 11101100100 \\
& 10011000011
\end{aligned}
$$

$$
10011000011
$$

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in x basis

Pick random bitstring r

Measure qubit in basis \qquad Pick $(Z+X)$ or $(Z-X)$ basis Validate against r, x_{0}, x_{1}, d

In this case, 1-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r=x_{1} \cdot r$, otherwise $|+\rangle$ or $|-\rangle$.

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {Bell }}$ Success rate when performing Bell-type measurement.
Under assumption of claw-free function:

$$
\begin{aligned}
& \text { Classical bound: } p_{Z}+4 p_{\text {Bell }} \lesssim 4 \\
& \text { Ideal quantum: } p_{Z}=1, p_{\text {Bell }}=\cos ^{2}(\pi / 8) \\
& p_{Z}+4 p_{\text {Bell }}=3+\sqrt{2} \approx 4.414
\end{aligned}
$$

Note: Let $p_{z}=1$. Then for $p_{\text {Bell }}$:
Classical bound 75%, ideal quantum $\sim 85 \%$.
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

The CHSH game (Bell test)

Cooperative two-player game; players can't communicate (non-local).

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

The CHSH game (Bell test)

Cooperative two-player game; players can't communicate (non-local).

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Classical optimal strategy: return equal values, hope you didn't both get heads. 75\% success rate.

Can we do better with entanglement?

The CHSH game (Bell test)

Cooperative two-player game; players can’t communicate (non-local).

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle$

The CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$

The CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; antialigned \rightarrow opposite result!

The CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; antialigned \rightarrow opposite result!

The CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; antialigned \rightarrow opposite result!

The CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; antialigned \rightarrow opposite result!

> Quantum: $\cos ^{2}(\pi / 8) \approx 85 \%$ Classical: 75%

Intermediate measurements in the lab

TIQI 48

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Intermediate measurements in the lab

TIDI
 48

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIDI
 48

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First proof-of-concept demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Interactive proofs on a few qubits

Experimental results for $f(x)=x^{2} \bmod N$
Up and right is stronger evidence of quantumness

GDKM, D. Zhu, et al. (arXiv:2112.05156)

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Idea: do something really quantum: compute function in phase!

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Idea: do something really quantum: compute function in phase!
Decompose this as

$$
\mathcal{U}=\left(\mathbb{I} \otimes \mathrm{IQFT}_{N}\right) \cdot \tilde{\mathcal{U}} \cdot\left(\mathbb{I} \otimes \mathrm{QFT}_{N}\right)
$$

with

$$
\tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Idea: do something really quantum: compute function in phase!
Decompose this as

$$
\mathcal{U}=\left(\mathbb{I} \otimes \mathrm{IQFT}_{N}\right) \cdot \tilde{\mathcal{U}} \cdot\left(\mathbb{I} \otimes \mathrm{QFT}_{N}\right)
$$

with

$$
\tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Advantages:

- Everything is diagonal (it's just a phase)!
- Modulo is automatic in the phase
- Simple decomposition into few-qubit gates

Implementation

$$
\text { New goal: } \quad \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Decompose using "grade school" integer multiplication:

$$
a \cdot b=\sum_{i, j} 2^{i+j} a_{i} b_{j}
$$

Implementation

$$
\text { New goal: } \quad \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Decompose using "grade school" integer multiplication:

$$
\begin{gathered}
a \cdot b=\sum_{i, j} 2^{i+j} a_{i} b_{j} \\
x^{2} z=\sum_{i, j, k} 2^{i+j+k} x_{i} x_{j} z_{k}
\end{gathered}
$$

Implementation

$$
\text { New goal: } \quad \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Decompose using "grade school" integer multiplication:

$$
\begin{gathered}
a \cdot b=\sum_{i, j} 2^{i+j} a_{i} b_{j} \\
x^{2} z=\sum_{i, j, k} 2^{i+j+k} x_{i} x_{j} z_{k} \\
\exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{gathered}
$$

Implementation

$$
\begin{aligned}
& \text { New goal: } \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle \\
& \exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{aligned}
$$

- Binary multiplication is AND

Implementation

$$
\begin{aligned}
& \text { New goal: } \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle \\
& \exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{aligned}
$$

- Binary multiplication is AND
- "Apply phase whenever $x_{i}=x_{j}=z_{k}=1$ "

Implementation

$$
\begin{aligned}
& \text { New goal: } \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle \\
& \exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{aligned}
$$

- Binary multiplication is AND
- "Apply phase whenever $x_{i}=x_{j}=z_{k}=1$ "
- These are CCPhase gates (of arb. phase)!

Leveraging the Rydberg blockade

Leveraging the Rydberg blockade

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group \mathbb{G} of order N, with generator g. Given the tuple $\left(g, g^{a}, g^{b}, g^{c}\right)$, determine if $c=a b$.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group \mathbb{G} of order N, with generator g. Given the tuple $\left(g, g^{a}, g^{b}, g^{c}\right)$, determine if $c=a b$.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!
How to build a TCF?

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group \mathbb{G} of order N, with generator g. Given the tuple $\left(g, g^{a}, g^{b}, g^{c}\right)$, determine if $c=a b$.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!
How to build a TCF?
Trapdoor [Peikert, Waters '08; Freeman et al. '10]: linear algebra in the exponent Claw-free [GDKM et al. '21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

Full protocol

