QUANTUM COMPUTING

how to do math with atoms, and how to trust the answers

Greg Kahanamoku-Meyer
PhD candidate, UC Berkeley Physics

Quantum mechanics

Quantum superposition:
"A particle is in multiple places at once."

Quantum mechanics

Fig. 1: Map of our region

Fig. 2: An atom with 1 electron.

From far away, we can point to the one location of Lake Tahoe, and the electron.

Quantum mechanics

Fig. 3: Me and my dog in a lake. Fig. 4: An atom, close-up.

Up close, "point to the exact position" doesn't make sense.

Quantum mechanics

Fig. 5: Me and my dog not in a lake.

no electron $\mathcal{\jmath}$

Fig. 6: Not where the electron is.
... but there are definitely wrong answers.

Wavefunctions

Before measuring position

After measuring position

Fig. 7: Wavefunctions of a particle.
"Wave-particle duality" \rightarrow "Wave-‘more pointy wave' duality"

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

More than just "where a particle is"

Anything you can measure about a particle behaves this way!
For simplicity, look at measurements with only two options:

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

What determines the result?

More than one quantum object

Particle \#1

Result of measurement

Particle \#2

More than one quantum object

Particles \#1 and \#2

Result of measurements

More than one quantum object

Particles \#1 and \#2

This is quantum entanglement---the outcomes are connected.

con Cutars

What is a computer?

Instagram: ads with occasional pictures of your friends

Google Maps: ads along with directions to beer

Computers

What is a computer?

At a low level, a computer is just a fancy calculator

Computers

What is a computer?

Uses physical systems (electricity in tiny wires, tiny magnets on a disk, etc.) to store data and do math on it

Computers

What is a computer?

Those physical things represent bits: values that can be 0 or 1

Computers

What is a computer?

What if we replaced those tiny physical pieces with something quantum?
Quantum bits \rightarrow "qubits"

Quantum computing: hacking the lottery

We have our hands on the code behind the lottery: takes in a number, and computes the payout!

Quantum computing: hacking the lottery

We have our hands on the code behind the lottery: takes in a number, and computes the payout!

Quantum computing: hacking the lottery

We have our hands on the code behind the lottery: takes in a number, and computes the payout!

Goal: find the one number that gives " $\$ 1,000,000$ "

> Regular ("classical") computer

Best strategy: ... just try every number

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Quantum computing: hacking the lottery

We did the calculation, now let's look at the results!! And we get...

Quantum input \rightarrow quantum output!

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

bar height = prob. of
seeing that result \square

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Quantum computing: hacking the lottery

Goal: find the one number that gives " $\$ 1,000,000$ "

Why aren't we doing this right now

Major difficulty \#1: quantum computations are fragile

If anything interacts into the qubits, the computation breaks!

Why aren't we doing this right now

Major difficulty \#2: quantum computers are slow

"Grover search" (hacking the lottery)

Quantum

Classical

Why aren't we doing this right now

Major difficulty \#2: quantum computers are slow

"Grover search" (hacking the lottery)

Quantum

Classical

Why aren't we doing this right now

Major difficulty \#2: quantum computers are slow

"Grover search" (hacking the lottery)

Classical

Why aren't we doing this right now

Major difficulty \#2: quantum computers are slow

"Grover search" (hacking the lottery)

Quantum

Classical

Why aren't we doing this right now

Major difficulty \#2: quantum computers are slow

"Grover search" (hacking the lottery)

Quantum

Classical

Why aren't we doing this right now

Major difficulty \#2: quantum computers are slow

"Grover search" (hacking the lottery)

Quantum

Classical

Some hope: exponential speedups

Quantum
Classical

Some hope: exponential speedups

\#

Quantum
Classical

Some hope: exponential speedups

Quantum
Classical

Some hope: exponential speedups

Quantum
Classical

Some hope: exponential speedups

Quantum
Classical

Some hope: exponential* speedups

Quantum

Classical

Challenge: bigger quantum computations \rightarrow more fragile

What quantum computers can do

Current state of the art:

For an extremely specific set of calculations, the best quantum computers can probably beat a classical supercomputer.

For most useful tasks, they don't beat the computer chip in my toaster.

Summary of quantum speedups

Task	Theoretical Speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile

Summary of quantum speedups

Task	Theoretical Speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile

Summary of quantum speedups

Task	Theoretical Speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile
Machine learning	Not clear (and depends on what you're doing)	Too small and fragile

Summary of quantum speedups

Task	Theoretical Speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile
Machine learning	Not clear (and depends on what you're doing)	Too small and fragile
Chemistry calculations	Not clear (and depends on what you're doing)	Too small and fragile

Summary of quantum speedups

Task	Theoretical Speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile
Machine learning	Not clear (and depends on what you're doing)	Too small and fragile
Chemistry calculations	Not clear (and depends on what you're doing)	Too small and fragile
Certain quantum mechanics problems	Exponentially faster, depending on the problem	Experiments seem to have beaten regular computers

Side note: factoring

The security of basically the entire internet relies on factoring (and related problems) being hard.

[^0]
Features of current quantum computers

- Slow
- Small
- Extremely error prone
- Algorithms are thought to be better than regular computers... for a few very specific problems
- We don't know the limits of their capabilities yet!

The future of quantum computing

A quantum laptop? Probably not.

rent-a-quantum.com

10100111100
11010110011
11101100
10011000
$\square \square$
Quantum cloud service? Probably!

Trusting quantum computers

Q: Why can't you trust atoms?
A: Because they make up everything!

Trusting quantum computers

Q: Why can't you trust atoms?
A: Because they make upeverything!

If regular computers can't solve the problem, how do we check that the answer is right?

Trusting quantum computers

Just checking if it's working: check all of the special cases you can find

The 53-qubit processor Google used to show the first "quantum advantage"

Trusting quantum computers

Just checking if it's working: check all of the special cases you can find

nature

Explore content \checkmark

```
nature > articles > article
Article | Published: 23 October 2019
Quantum supremacy using a programmable
superconducting processor
Frank Arute, Kunal Arya, ... John M. Martinis }\\mathrm{ + Show authors
Nature 574, 505-510 (2019)| Cite this article
923k Accesses | 2207 Citations | 6222 Altmetric | Metrics
```


Trusting quantum computers

Thursday, August 4, 2022 Today's Paper

The New Hork times

To be clear, this is not a real headline. I made it up.
How do we verify the results of a quantum computer we don't trust?

Some problems are easy to check!

Factoring

Multiplication

Some problems are easy to check!

Factoring
58592674796345200961477663

Multiplication

What about the problems that aren't?

Demo: proving that you can distinguish colors

Summary

- Quantum computers are faster, but in subtle ways and only for specific problems
- Current quantum computers are small, slow, and error-prone
- Rapidly improving, and looking for new apps
- We can use clever tricks to check the answers!

Thank you!!

[^0]: What you get if you search the web for "quantum hacker"

