

QUANTUM COMPUTING

how to do math with atoms, and how to trust the answers

> Greg Kahanamoku-Meyer PhD candidate, UC Berkeley Physics

Quantum superposition: "A particle is in multiple places at once."

Fig. 1: Map of our region

Fig. 2: An atom with 1 electron.

From far away, we can point to the *one* location of Lake Tahoe, and the electron.

Fig. 4: An atom, close-up.

Fig. 3: Me and my dog in a lake.

Up close, "point to the exact position" doesn't make sense.

Fig. 5: Me and my dog not in a lake.

Fig. 6: Not where the electron is.

... but there are definitely wrong answers.

Wavefunctions

Before measuring positionAfter measuring positionFig. 7: Wavefunctions of a particle.

"Wave-particle duality" → "Wave-'more pointy wave' duality"

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

More than just "where a particle is"

Anything you can measure about a particle behaves this way!

For simplicity, look at measurements with only two options:

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

What is a "measurement"?

Roughly: anytime something "big" depends on what the quantum object is doing.

What determines the result?

More than one quantum object

More than one quantum object

Particles #1 and #2

Result of measurements

More than one quantum object

Particles #1 and #2

Result of measurements

This is **quantum entanglement**---the outcomes are *connected*.

What is a computer?

Creative Play Center

Instagram: ads with occasional pictures of your friends

Google Maps: ads along with directions to beer

What is a computer?

At a low level, a computer is just a **fancy calculator**

What is a computer?

Uses physical systems (electricity in tiny wires, tiny magnets on a disk, etc.) to store data and do math on it

What is a computer?

Those physical things represent **bits**: values that can be 0 or 1

What is a computer?

What if we replaced those tiny physical pieces with something quantum? Quantum bits \rightarrow "qubits"

We have our hands on the code behind the lottery: takes in a number, and computes the payout!

We have our hands on the code behind the lottery: takes in a number, and computes the payout!

We have our hands on the code behind the lottery: takes in a number, and computes the payout!

<u>Goal: find the one number that gives "\$1,000,000"</u> **Regular ("classical") computer** Best strategy: ... just try every number

<u>Goal: find the one number that gives "\$1,000,000"</u>

{ means quantum superposition

We did the calculation, now let's look at the results!! And we get...

Quantum input → quantum output!

<u>Goal: find the one number that gives "\$1,000,000"</u>

<u>Goal: find the one number that gives "\$1,000,000"</u>

bar height = prob. of seeing that result

<u>Goal: find the one number that gives "\$1,000,000"</u>

bar height = prob. of seeing that result

<u>Goal: find the one number that gives "\$1,000,000"</u>

bar height = prob. of seeing that result

<u>Goal: find the one number that gives "\$1,000,000"</u>

of

bar height = prob.

30

<u>Goal: find the one number that gives "\$1,000,000"</u>

<u>Goal: find the one number that gives "\$1,000,000"</u>

Major difficulty #1: quantum computations are *fragile*

If *anything* interacts into the qubits, the computation breaks!

Major difficulty #2: quantum computers are *slow*

"Grover search" (hacking the lottery)

Classical

Major difficulty #2: quantum computers are *slow*

"Grover search" (hacking the lottery)

Classical

Major difficulty #2: quantum computers are *slow*

"Grover search" (hacking the lottery)

Quantum

Classical

Why aren't we doing this right now

Major difficulty #2: quantum computers are *slow*

"Grover search" (hacking the lottery)

Quantum

Classical

Why aren't we doing this right now

Major difficulty #2: quantum computers are *slow*

"Grover search" (hacking the lottery)

Quantum Classical

Why aren't we doing this right now

Major difficulty #2: quantum computers are *slow*

"Grover search" (hacking the lottery)

Quantum Classical

Quantum

Classical

Ŧ

40

Quantum

Quantum

Quantum

Quantum

44

Quantum

Classical

Challenge: bigger quantum computations \rightarrow more fragile

<u>What quantum computers can do</u>

Current state of the art:

For an extremely specific set of calculations, the best quantum computers can *probably* beat a classical supercomputer.

For most **useful** tasks, they don't beat the computer chip in my toaster.

Summary of quantum speedups

Task	Theoretical speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile

Task	Theoretical speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile

Task	Theoretical speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile
Machine learning	Not clear (and depends on what you're doing)	Too small and fragile

Task	Theoretical speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile
Machine learning	Not clear (and depends on what you're doing)	Too small and fragile
Chemistry calculations	Not clear (and depends on what you're doing)	Too small and fragile

Task	Theoretical speedup	Can we do it in 2022?
Searching (lottery)	Somewhat faster	Too small and fragile
Factoring numbers	Much faster	Too small and fragile
Machine learning	Not clear (and depends on what you're doing)	Too small and fragile
Chemistry calculations	Not clear (and depends on what you're doing)	Too small and fragile
Certain quantum mechanics problems	Exponentially faster, depending on the problem	Experiments seem to have beaten regular computers

Side note: factoring

The security of basically the *entire internet* relies on factoring (and related problems) being hard.

What you get if you search the web for "quantum hacker"

Features of current quantum computers

- Slow
- Small
- Extremely error prone
- Algorithms are thought to be better than regular computers... for a few very specific problems
- We don't know the limits of their capabilities yet!

The future of quantum computing

A quantum laptop? Probably not.

Quantum cloud service? Probably!

Q: Why can't you trust atoms?

A: Because they make up everything!

Q: Why can't you trust atoms?

A: Because they make up everything!

If regular computers can't solve the problem, how do we check that the answer is *right*?

Just checking if it's working: check all of the special cases you can find

The 53-qubit processor Google used to show the first "quantum advantage"

Just checking if it's working: check all of the special cases you can find

nature	
Explore content \checkmark About the journal \checkmark Publish with us \checkmark	
nature > articles > article	
Article Published: 23 October 2019 Quantum supremacy using a programmable superconducting processor	
Frank Arute, Kunal Arya, John M. Martinis 🖂 🕇 + Show authors	
Nature574, 505–510 (2019)Cite this article923kAccesses2207Citations6222AltmetricMetrics	

Theranos Leaves Biotech Business, Turns to Building Quantum Computers

- CEO Elizabeth Holmes states the emerging field of quantum computing will be a "new start" for the company
- Despite extensive fraud at previous company, investors inexplicably believe it's a good idea to dump millions of dollars into this new venture

To be clear, this is not a real headline. I made it up.

How do we verify the results of a quantum computer we don't trust?

Some problems are easy to check!

Some problems are easy to check!

What about the problems that aren't?

Demo: proving that you can distinguish colors

Summary

- Quantum computers are faster, but in subtle ways and only for specific problems
- Current quantum computers are small, slow, and error-prone
- Rapidly improving, and looking for new apps
- We can use clever tricks to check the answers!

Thank you!!