
Classical verification of

quantum computation

Greg Kahanamoku-Meyer

10100111100
11010110011
11101100100
10011000011

May 3, 2022

Focus of today

How can we demonstrate that a supposed “quantum computer” is actually doing
something non-classical?

... or ...

How can we demonstrate that quantum computing in practice can do
something non-classical?

Setting:

• Single quantum “prover” (computational demonstration)
• “Verifier” + communication is entirely classical
• No assumptions about how prover works

2

Focus of today

How can we demonstrate that a supposed “quantum computer” is actually doing
something non-classical?

... or ...

How can we demonstrate that quantum computing in practice can do
something non-classical?

Setting:

• Single quantum “prover” (computational demonstration)
• “Verifier” + communication is entirely classical
• No assumptions about how prover works

2

Focus of today

How can we demonstrate that a supposed “quantum computer” is actually doing
something non-classical?

... or ...

How can we demonstrate that quantum computing in practice can do
something non-classical?

Setting:

• Single quantum “prover” (computational demonstration)

• “Verifier” + communication is entirely classical
• No assumptions about how prover works

2

Focus of today

How can we demonstrate that a supposed “quantum computer” is actually doing
something non-classical?

... or ...

How can we demonstrate that quantum computing in practice can do
something non-classical?

Setting:

• Single quantum “prover” (computational demonstration)
• “Verifier” + communication is entirely classical

• No assumptions about how prover works

2

Focus of today

How can we demonstrate that a supposed “quantum computer” is actually doing
something non-classical?

... or ...

How can we demonstrate that quantum computing in practice can do
something non-classical?

Setting:

• Single quantum “prover” (computational demonstration)
• “Verifier” + communication is entirely classical
• No assumptions about how prover works

2

Quantum computational advantage

Experiments claiming that their output can’t be simulated classically:

• How hard is it really to classically simulate?
• If indeed we can’t simulate, how do we check that it’s correct?

3

Quantum computational advantage

Experiments claiming that their output can’t be simulated classically:

• How hard is it really to classically simulate?
• If indeed we can’t simulate, how do we check that it’s correct?

3

How hard is it to classically simulate?

Focusing on Google’s random circuit sampling experiment with 53 qubits:

Complexity theory suggests it’s hard.

But...

What does it mean for a computation to be classically hard?

4

How hard is it to classically simulate?

Focusing on Google’s random circuit sampling experiment with 53 qubits:

Complexity theory suggests it’s hard. But...

What does it mean for a computation to be classically hard?
4

What does it mean to be classically hard?

Complexity theory

All about asymptotics. Example:

“Simulating the generic evolution of n qubits
takes time that scales as O(2n)”

“hard” ∼ “superpolynomial”

In practice

We care about actual resource costs for a
specific instance of the problem. Ex:

“Simulating this depth-20 circuit on 20
qubits takes 10 minutes.” (not hard)

“hard” ∼ “takes unrealistic resources”

Takeaway: Complexity theory tells us how the hardness of a problem scales,
but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

5

What does it mean to be classically hard?

Complexity theory

All about asymptotics. Example:

“Simulating the generic evolution of n qubits
takes time that scales as O(2n)”

“hard” ∼ “superpolynomial”

In practice

We care about actual resource costs for a
specific instance of the problem. Ex:

“Simulating this depth-20 circuit on 20
qubits takes 10 minutes.” (not hard)

“hard” ∼ “takes unrealistic resources”

Takeaway: Complexity theory tells us how the hardness of a problem scales,
but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

5

What does it mean to be classically hard?

Complexity theory

All about asymptotics. Example:

“Simulating the generic evolution of n qubits
takes time that scales as O(2n)”

“hard” ∼ “superpolynomial”

In practice

We care about actual resource costs for a
specific instance of the problem. Ex:

“Simulating this depth-20 circuit on 20
qubits takes 10 minutes.” (not hard)

“hard” ∼ “takes unrealistic resources”

Takeaway: Complexity theory tells us how the hardness of a problem scales,
but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

5

What does it mean to be classically hard?

Complexity theory

All about asymptotics. Example:

“Simulating the generic evolution of n qubits
takes time that scales as O(2n)”

“hard” ∼ “superpolynomial”

In practice

We care about actual resource costs for a
specific instance of the problem. Ex:

“Simulating this depth-20 circuit on 20
qubits takes 10 minutes.” (not hard)

“hard” ∼ “takes unrealistic resources”

Takeaway: Complexity theory tells us how the hardness of a problem scales,
but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

5

What does it mean to be classically hard?

Complexity theory

All about asymptotics. Example:

“Simulating the generic evolution of n qubits
takes time that scales as O(2n)”

“hard” ∼ “superpolynomial”

In practice

We care about actual resource costs for a
specific instance of the problem. Ex:

“Simulating this depth-20 circuit on 20
qubits takes 10 minutes.” (not hard)

“hard” ∼ “takes unrealistic resources”

Takeaway: Complexity theory tells us how the hardness of a problem scales,
but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

5

What does it mean to be classically hard?

Complexity theory

All about asymptotics. Example:

“Simulating the generic evolution of n qubits
takes time that scales as O(2n)”

“hard” ∼ “superpolynomial”

In practice

We care about actual resource costs for a
specific instance of the problem. Ex:

“Simulating this depth-20 circuit on 20
qubits takes 10 minutes.” (not hard)

“hard” ∼ “takes unrealistic resources”

Takeaway: Complexity theory tells us how the hardness of a problem scales,
but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

5

Quantum computational advantage

Experiments claiming that their output can’t be simulated classically:

• How hard is it really to classically simulate?
• If indeed we can’t simulate, how do we check that it’s correct?

6

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.

“The device works correctly on the easy ones, so it probably also works on the hard one”

Ideally:

• Remove need for extrapolations/assumptions in verification process
• Not need a supercomputer to do it

7

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.

“The device works correctly on the easy ones, so it probably also works on the hard one”

Ideally:

• Remove need for extrapolations/assumptions in verification process
• Not need a supercomputer to do it

7

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.

“The device works correctly on the easy ones, so it probably also works on the hard one”

Ideally:

• Remove need for extrapolations/assumptions in verification process
• Not need a supercomputer to do it

7

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.

“The device works correctly on the easy ones, so it probably also works on the hard one”

Ideally:

• Remove need for extrapolations/assumptions in verification process
• Not need a supercomputer to do it

7

Robust, verifiable quantum computational advantage

We want a test with three properties:

• Easy for quantum device to pass
• Hard for classical computer to pass*
• Easy for classical computer to verify

* with well-studied practical hardness!

8

Robust, verifiable quantum computational advantage

We want a test with three properties:
• Easy for quantum device to pass

• Hard for classical computer to pass*
• Easy for classical computer to verify

* with well-studied practical hardness!

8

Robust, verifiable quantum computational advantage

We want a test with three properties:
• Easy for quantum device to pass
• Hard for classical computer to pass*

• Easy for classical computer to verify

* with well-studied practical hardness!

8

Robust, verifiable quantum computational advantage

We want a test with three properties:
• Easy for quantum device to pass
• Hard for classical computer to pass*
• Easy for classical computer to verify

* with well-studied practical hardness!

8

Robust, verifiable quantum computational advantage

We want a test with three properties:
• Easy for near-term quantum device to pass
• Hard for classical supercomputer to pass*
• Easy for classical laptop computer to verify

* with well-studied practical hardness!

8

Robust, verifiable quantum computational advantage

We want a test with three properties:
• Easy for near-term quantum device to pass
• Hard for classical supercomputer to pass*
• Easy for classical laptop computer to verify

* with well-studied practical hardness!

8

Robust, verifiable quantum computational advantage

We want a test with three properties:
• Easy for near-term quantum device to pass
• Hard for classical supercomputer to pass*
• Easy for classical laptop computer to verify

* with well-studied practical hardness!

8

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature

• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature

• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Connection to cryptography

“Making sure certain things computationally hard, while keeping others easy.”

Encryption: should be hard in practice for eavesdropper to discover the secret message;
easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ...

Digital signature/cryptographic proof:

• Easy for signer (on a laptop) to create signature
• Hard for even supercomputer to forge a signature
• Easy for recipient (on a laptop) to verify signature

Our goal: a “cryptographic proof of quantumness”

9

Near-term verifiable quantum advantage

Trivial solution: Shor’s algorithm

... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

10

Near-term verifiable quantum advantage

Trivial solution: Shor’s algorithm... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

10

Near-term verifiable quantum advantage

Trivial solution: Shor’s algorithm... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

10

Adding structure to sampling problems

Generically: seems hard.

The point of random circuits is that they don’t have structure!

11

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes

• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes

• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?

• Is there some way to pass the test without simulating the circuit?

12

IQP

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009] Claim: Can hide a secret ~s in H, such that:

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

For proof, collect many (unique) samples, and statistically establish that p~x·~s > 75%

• Easy for quantum device to pass: yes
• Easy for classical computer to verify: yes
• Hard for classical computer to cheat: hopefully?

• Is it possible to simulate this class of circuits?
• Is there some way to pass the test without simulating the circuit? 12

The $25 challenge

13

IQP: is it possible to simulate classically?

... and in practice, it seems to be infeasible for > 50 qubits...

14

IQP: is it possible to simulate classically?

... and in practice, it seems to be infeasible for > 50 qubits...
14

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

Key: for a given H (and thus ~s) one can classically generate sets of correlated samples.

Q: why doesn’t this immediately break the
protocol?

But...
In 100% case, get a system of equations for s!

With knowledge of ~s, trivial to classically
pass test.

15

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

Key: for a given H (and thus ~s) one can classically generate sets of correlated samples.

Q: why doesn’t this immediately break the
protocol?

But...
In 100% case, get a system of equations for s!

With knowledge of ~s, trivial to classically
pass test.

15

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

Key: for a given H (and thus ~s) one can classically generate sets of correlated samples.

Q: why doesn’t this immediately break the
protocol?

But...
In 100% case, get a system of equations for s!

With knowledge of ~s, trivial to classically
pass test.

15

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

Key: for a given H (and thus ~s) one can classically generate sets of correlated samples.

Q: why doesn’t this immediately break the
protocol?

But...
In 100% case, get a system of equations for s!

With knowledge of ~s, trivial to classically
pass test.

15

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with ~x ·~s = 0:

Quantum: ∼85% Classical: ≤75%

Key: for a given H (and thus ~s) one can classically generate sets of correlated samples.

Q: why doesn’t this immediately break the
protocol?

But...
In 100% case, get a system of equations for s!

With knowledge of ~s, trivial to classically
pass test.

15

Breaking the IQP protocol

Trying it against their verification code...

16

Breaking the IQP protocol

Trying it against their verification code...

16

Breaking the IQP protocol

Trying it against their verification code...

16

Breaking the IQP protocol

Trying it against their verification code...

16

Near-term verifiable quantum advantage

NISQ: Noisy Intermediate-Scale Quantum devices

17

Making number theoretic problems less costly

Fully solving a problem like factoring is “overkill”

Can we demonstrate quantum capability without needing to solve such a hard problem?

18

Making number theoretic problems less costly

Fully solving a problem like factoring is “overkill”

Can we demonstrate quantum capability without needing to solve such a hard problem?

18

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back

2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing—iterate for exponential certainty.

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

without ever telling you the colors?

This constitutes a zero-knowledge interactive proof.

You (color blind)⇔ Classical verifier
Seeing color⇔ Quantum capability

Goal: find protocol as verifiable and classically hard as factoring—
but less expensive than actually finding factors (via Shor)

19

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

10100111100
11010110011
11101100100
10011000011

Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in specific basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover would respond correctly in any basis

20

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in specific basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover would respond correctly in any basis

20

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

Round 1: Prover commits to holding a specific quantum state

Round 2: Verifier asks for measurement in specific basis, prover performs it

By randomizing choice of basis and repeating interaction,
can ensure prover would respond correctly in any basis

20

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉+ |x1〉) |y〉

21

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉+ |x1〉) |y〉

21

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f , there exist (x0, x1) such that y = f (x0) = f (x1).

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition f←−−−−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y y−−−−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉+ |x1〉) |y〉
21

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

22

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

22

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs

• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

22

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

22

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

22

State commitment (round 1): trapdoor claw-free functions

Prover has committed to (|x0〉+ |x1〉) |y〉 with y = f (x0) = f (x1)

Source of power: cryptographic properties of 2-to-1 function f

• “Claw-free”: It is cryptographically hard to find any pair of colliding inputs
• Trapdoor: With the secret key, easy to classically compute the two inputs mapping to
any output

Cheating classical prover can’t forge the state;
classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses
superposition + wavefunction collapse—inherently quantum!

22

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

Function is actually 4-to-1 but collisions like {x,−x} are trivial—set domain to integers in
range [0,N/2].

Properties:

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring. This is called a reduction

• Trapdoor: Function is easily inverted with knowledge of p,q

Example: 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

23

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

Function is actually 4-to-1 but collisions like {x,−x} are trivial—set domain to integers in
range [0,N/2].

Properties:

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring. This is called a reduction

• Trapdoor: Function is easily inverted with knowledge of p,q

Example: 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

23

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

Function is actually 4-to-1 but collisions like {x,−x} are trivial—set domain to integers in
range [0,N/2].

Properties:

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring. This is called a reduction

• Trapdoor: Function is easily inverted with knowledge of p,q

Example: 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

23

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

Function is actually 4-to-1 but collisions like {x,−x} are trivial—set domain to integers in
range [0,N/2].

Properties:

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring. This is called a reduction

• Trapdoor: Function is easily inverted with knowledge of p,q

Example: 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

23

Trapdoor claw-free function example

f (x) = x2 mod N, where N = pq

Function is actually 4-to-1 but collisions like {x,−x} are trivial—set domain to integers in
range [0,N/2].

Properties:

• Claw-free: Easy to compute p,q given a colliding pair—thus finding collisions is as
hard as factoring. This is called a reduction

• Trapdoor: Function is easily inverted with knowledge of p,q

Example: 42 ≡ 112 ≡ 16 (mod 35); and 11− 4 = 7

23

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Z basis: get x0 or x1

X basis: get some bitstring d, such that d · x0 = d · x1
Hardness of finding (x0, x1) does not imply hardness of measurement results!

arXiv:1804.00640
24

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Z basis: get x0 or x1

X basis: get some bitstring d, such that d · x0 = d · x1
Hardness of finding (x0, x1) does not imply hardness of measurement results!

arXiv:1804.00640
24

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Z basis: get x0 or x1

X basis: get some bitstring d, such that d · x0 = d · x1
Hardness of finding (x0, x1) does not imply hardness of measurement results!

arXiv:1804.00640
24

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Z basis: get x0 or x1
X basis: get some bitstring d, such that d · x0 = d · x1

Hardness of finding (x0, x1) does not imply hardness of measurement results!

arXiv:1804.00640
24

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Z basis: get x0 or x1
X basis: get some bitstring d, such that d · x0 = d · x1

Hardness of finding (x0, x1) does not imply hardness of measurement results!

arXiv:1804.00640
24

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Hardness of finding (x0, x1) does not imply hardness of measurement results!

Protocol requires strong claw-free property:
For any x0, hard to find even a single bit about x1.

arXiv:1804.00640
24

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Hardness of finding (x0, x1) does not imply hardness of measurement results!
Protocol requires strong claw-free property:

For any x0, hard to find even a single bit about x1.

arXiv:1804.00640
24

Trapdoor claw-free functions

Function family Trapdoor Claw-free Strong claw-free
Learning-with-Errors [1] 3 3 3

Ring Learning-with-Errors [2] 3 3 7

x2 mod N [3] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model?

Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

25

Trapdoor claw-free functions

Function family Trapdoor Claw-free Strong claw-free
Learning-with-Errors [1] 3 3 3

Ring Learning-with-Errors [2] 3 3 7

x2 mod N [3] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model?

Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

25

Trapdoor claw-free functions

Function family Trapdoor Claw-free Strong claw-free
Learning-with-Errors [1] 3 3 3

Ring Learning-with-Errors [2] 3 3 7

x2 mod N [3] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model?

Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

25

Trapdoor claw-free functions

Function family Trapdoor Claw-free Strong claw-free
Learning-with-Errors [1] 3 3 3

Ring Learning-with-Errors [2] 3 3 7

x2 mod N [3] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model? Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

25

Aside: the CHSH game (Bell test)

Cooperative two-player game; players can’t communicate (non-local).

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Classical optimal strategy: return equal values, hope you didn’t both get heads. 75%
success rate.

Can we do better with entanglement?

26

Aside: the CHSH game (Bell test)

Cooperative two-player game; players can’t communicate (non-local).

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Classical optimal strategy: return equal values, hope you didn’t both get heads. 75%
success rate.

Can we do better with entanglement?
26

Aside: the CHSH game (Bell test)

Cooperative two-player game; players can’t communicate (non-local).

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Consider the Bell pair: |ψ〉 = |↑↑〉+ |↓↓〉

= |←←〉+ |→→〉 = · · ·

Aligned basis→ same result; antialigned→ opposite result!

26

Aside: the CHSH game (Bell test)

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Consider the Bell pair: |ψ〉 = |↑↑〉+ |↓↓〉= |←←〉+ |→→〉 = · · ·

Aligned basis→ same result; antialigned→ opposite result!

26

Aside: the CHSH game (Bell test)

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Consider the Bell pair: |ψ〉 = |↑↑〉+ |↓↓〉= |←←〉+ |→→〉 = · · ·

Aligned basis→ same result; antialigned→ opposite result!

26

Aside: the CHSH game (Bell test)

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Consider the Bell pair: |ψ〉 = |↑↑〉+ |↓↓〉= |←←〉+ |→→〉 = · · ·

Aligned basis→ same result; antialigned→ opposite result!

26

Aside: the CHSH game (Bell test)

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Consider the Bell pair: |ψ〉 = |↑↑〉+ |↓↓〉= |←←〉+ |→→〉 = · · ·

Aligned basis→ same result; antialigned→ opposite result!

26

Aside: the CHSH game (Bell test)

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Consider the Bell pair: |ψ〉 = |↑↑〉+ |↓↓〉= |←←〉+ |→→〉 = · · ·

Aligned basis→ same result; antialigned→ opposite result!

26

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Replace X basis measurement with “single-qubit CHSH game”

27

Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition:∑
x |x〉 |f (x)〉

f←−−−−−−−−−−−−−− Pick trapdoor claw-free function f

Measure 2nd register as y y−−−−−−−−−−−−−−→ Compute x0, x1 from y using trapdoor

Measure qubits of |x0〉+ |x1〉 in given
basis

basis←−−−−−−−−−−−−−− Pick Z or X basis

result−−−−−−−−−−−−−−→ Validate result against x0, x1

Replace X basis measurement with “single-qubit CHSH game”

27

Interactive measurement: computational Bell test

Two-step process: “condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Now 1-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉. Polarization hidden via:

Cryptographic secret (here)⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

28

Interactive measurement: computational Bell test

Two-step process: “condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Now 1-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉.

Polarization hidden via:

Cryptographic secret (here)⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

28

Interactive measurement: computational Bell test

Two-step process: “condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Now 1-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉. Polarization hidden via:

Cryptographic secret (here)⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

28

Interactive measurement: computational Bell test

Two-step process: “condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Measure qubit in basis basis←−−−−−−−−−−−−−− Pick (Z + X) or (Z − X) basis
result−−−−−−−−−−−−−−→ Validate against r, x0, x1, d

This protocol can use any trapdoor claw-free function!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687) 28

Interactive measurement: computational Bell test

Two-step process: “condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in X basis d−−−−−−−−−−−−−−→

Measure qubit in basis basis←−−−−−−−−−−−−−− Pick (Z + X) or (Z − X) basis
result−−−−−−−−−−−−−−→ Validate against r, x0, x1, d

This protocol can use any trapdoor claw-free function!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687) 28

Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pBell: Success rate when performing Bell-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pBell . 4
Ideal quantum: pZ = 1,pBell = cos2(π/8)

pZ + 4pBell = 3+
√
2 ≈ 4.414

Note: Let pZ = 1. Then for pBell:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular Bell test!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

29

Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pBell: Success rate when performing Bell-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pBell . 4

Ideal quantum: pZ = 1,pBell = cos2(π/8)
pZ + 4pBell = 3+

√
2 ≈ 4.414

Note: Let pZ = 1. Then for pBell:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular Bell test!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

29

Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pBell: Success rate when performing Bell-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pBell . 4
Ideal quantum: pZ = 1,pBell = cos2(π/8)

pZ + 4pBell = 3+
√
2 ≈ 4.414

Note: Let pZ = 1. Then for pBell:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular Bell test!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

29

Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pBell: Success rate when performing Bell-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pBell . 4
Ideal quantum: pZ = 1,pBell = cos2(π/8)

pZ + 4pBell = 3+
√
2 ≈ 4.414

Note: Let pZ = 1. Then for pBell:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular Bell test!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

29

Computational Bell test: classical bound

Run protocol many times, collect statistics.

pZ : Success rate for Z basis measurement.

pBell: Success rate when performing Bell-type measurement.

Under assumption of claw-free function:

Classical bound: pZ + 4pBell . 4
Ideal quantum: pZ = 1,pBell = cos2(π/8)

pZ + 4pBell = 3+
√
2 ≈ 4.414

Note: Let pZ = 1. Then for pBell:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular Bell test!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

29

Overview: efficiently verifiable quantum advantage protocol

• Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness
less well established

• Shor’s alg. (and others) verifiable, but not feasible on near-term devices
• Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of
factoring, without full machinery of Shor

• Result: new protocol that allows proof of quantumness using any trapdoor claw-free
function, including x2 mod N

Asymptotically: evaluating x2 mod N requires O(n log n) gates;
ax mod N in Shor requires O(n2 log n)

(can also use other TCFs, and other optimizations...)

30

Overview: efficiently verifiable quantum advantage protocol

• Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness
less well established

• Shor’s alg. (and others) verifiable, but not feasible on near-term devices

• Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of
factoring, without full machinery of Shor

• Result: new protocol that allows proof of quantumness using any trapdoor claw-free
function, including x2 mod N

Asymptotically: evaluating x2 mod N requires O(n log n) gates;
ax mod N in Shor requires O(n2 log n)

(can also use other TCFs, and other optimizations...)

30

Overview: efficiently verifiable quantum advantage protocol

• Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness
less well established

• Shor’s alg. (and others) verifiable, but not feasible on near-term devices
• Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of
factoring, without full machinery of Shor

• Result: new protocol that allows proof of quantumness using any trapdoor claw-free
function, including x2 mod N

Asymptotically: evaluating x2 mod N requires O(n log n) gates;
ax mod N in Shor requires O(n2 log n)

(can also use other TCFs, and other optimizations...)

30

Overview: efficiently verifiable quantum advantage protocol

• Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness
less well established

• Shor’s alg. (and others) verifiable, but not feasible on near-term devices
• Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of
factoring, without full machinery of Shor

• Result: new protocol that allows proof of quantumness using any trapdoor claw-free
function, including x2 mod N

Asymptotically: evaluating x2 mod N requires O(n log n) gates;
ax mod N in Shor requires O(n2 log n)

(can also use other TCFs, and other optimizations...)

30

Overview: efficiently verifiable quantum advantage protocol

• Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness
less well established

• Shor’s alg. (and others) verifiable, but not feasible on near-term devices
• Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of
factoring, without full machinery of Shor

• Result: new protocol that allows proof of quantumness using any trapdoor claw-free
function, including x2 mod N

Asymptotically: evaluating x2 mod N requires O(n log n) gates;
ax mod N in Shor requires O(n2 log n)

(can also use other TCFs, and other optimizations...)

30

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)

[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)

[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)

[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold

• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions

• Measurement-based uncomputation scheme [2]

31

Moving towards efficiently-verifiable quantum advantage in the near term

[1] GDKM, D. Zhu, et al. ’21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)

Interaction

• Mid-circuit measurement: need to measure subsystem while maintaining coherence
on other qubits

• Recent first implementations by experiments! [1]

Fidelity (without error correction)

• Need to pass classical threshold
• Postselection scheme enables passing with ε circuit fidelity [2]

Circuit sizes

• Removing need for strong claw-free property allows use of “easier” functions
• Measurement-based uncomputation scheme [2]

31

Intermediate (mid-circuit) measurements

Principle of delayed measurement: delaying all measurements to the end of a circuit
doesn’t affect the measurement statistics.

Q: Why is mid-circuit measurement necessary for these protocols?

Other applications of mid-circuit measurement:

• Quantum error correction
• Quantum machine learning (QCNN)
• ...

32

Intermediate (mid-circuit) measurements

Principle of delayed measurement: delaying all measurements to the end of a circuit
doesn’t affect the measurement statistics.

Q: Why is mid-circuit measurement necessary for these protocols?

Other applications of mid-circuit measurement:

• Quantum error correction
• Quantum machine learning (QCNN)
• ...

32

Intermediate (mid-circuit) measurements

Principle of delayed measurement: delaying all measurements to the end of a circuit
doesn’t affect the measurement statistics.

Q: Why is mid-circuit measurement necessary for these protocols?

Other applications of mid-circuit measurement:

• Quantum error correction
• Quantum machine learning (QCNN)
• ...

32

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Intermediate measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland (→ Duke)

First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

33

Interactive proofs on a few qubits

Experimental results for f (x) = x2 mod N

Up and right is stronger evidence of
quantumness

GDKM, D. Zhu, et al. (arXiv:2112.05156)

0.7 0.8 0.9 1.0
pZ

0.6

0.7

0.8

0.9

p
B

e
ll pZ + 4pBell = 4

Classical bound

5

10

15

20

Ideal

N = 8

N = 15

N = 16

N = 21

Delayed

Interactive

m
o
re

q
u
a
n
tu

m

34

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!

• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)

• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]

• Explore other protocols (verifiable sampling with good security?)

35

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

• Preliminary implementation of x2 mod N at scale has depth 105—optimize it!
• Co-design circuits for specific hardware (Rydberg implementation in paper)
• x2 mod N requires at minimum 500-1000 qubits for classical hardness—search for
new claw-free functions?

Improving the protocol itself:

• Remove trapdoor—symmetric key/hash-based cryptography [arXiv:2204.02063]
• Explore other protocols (verifiable sampling with good security?)

35

References + further reading

Numbers below are arXiv IDs; go to arxiv.org/abs/xxxx.xxxxx
Proofs of quantumness
• IQP sampling protocol [0809.0847]
• Breaking IQP protocol [1912.05547]
• First interactive proof based on trapdoor
claw-free functions [1804.00640]

• Removing assumptions via random
oracles [2005.04826]

• Removing assumptions via
computational Bell test [2104.00687]

• Single-prover proofs from any
multi-prover quantum game [2203.15877]

• Proofs using only random oracles
[2204.02063]

Other applications of quantum interactive
proofs
• Certifiable quantum randomness
[1804.00640]

• Remote state preparation [1904.06320]
• Verification of arbitrary quantum
computations (!) [1804.01082]

Feel free to email me! Greg Kahanamoku-Meyer; gkm@berkeley.edu 36

Backup!

37

Hardness proof: rewinding

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

From a “proof of hardness” perspective:

• Classical cheater can be “rewound”
• Save state of prover after first round of interaction
• Extract measurement results in all choices of basis

• Quantum prover’s measurements are irreversible

“Rewinding” proof of hardness doesn’t go through for quantum prover—can even use
functions that are quantum claw-free!

38

Hardness proof: rewinding

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

From a “proof of hardness” perspective:

• Classical cheater can be “rewound”
• Save state of prover after first round of interaction
• Extract measurement results in all choices of basis

• Quantum prover’s measurements are irreversible

“Rewinding” proof of hardness doesn’t go through for quantum prover—can even use
functions that are quantum claw-free!

38

Hardness proof: rewinding

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

From a “proof of hardness” perspective:

• Classical cheater can be “rewound”
• Save state of prover after first round of interaction
• Extract measurement results in all choices of basis

• Quantum prover’s measurements are irreversible

“Rewinding” proof of hardness doesn’t go through for quantum prover—can even use
functions that are quantum claw-free!

38

Hardness proof: rewinding

10100111100
11010110011
11101100100
10011000011

measurement

commitment

Prover Verifier

...

From a “proof of hardness” perspective:

• Classical cheater can be “rewound”
• Save state of prover after first round of interaction
• Extract measurement results in all choices of basis

• Quantum prover’s measurements are irreversible

“Rewinding” proof of hardness doesn’t go through for quantum prover—can even use
functions that are quantum claw-free!

38

Technique: postselection

How to deal with high fidelity requirement? Naively need ∼ 83% overall circuit fidelity to
pass.

A prover holding (|x0〉+ |x1〉) |y〉 with ε phase coherence passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip error detection!

39

Technique: postselection

How to deal with high fidelity requirement? Naively need ∼ 83% overall circuit fidelity to
pass.

A prover holding (|x0〉+ |x1〉) |y〉 with ε phase coherence passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip error detection!

39

Technique: postselection

How to deal with high fidelity requirement? Naively need ∼ 83% overall circuit fidelity to
pass.

A prover holding (|x0〉+ |x1〉) |y〉 with ε phase coherence passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip error detection!

39

Technique: postselection

How to deal with high fidelity requirement? Naively need ∼ 83% overall circuit fidelity to
pass.

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Qu
an

tu
m

ne
ss

p x
+

4p
m

4

Quantum advantage threshold

Classical

Quantum

(a)
x 3mx

m = 3
m = 2
m = 1
m = 0

0.01 0.10 1.00
Circuit fidelity

1.0

10.0
Ru

nt
im

e
ov

er
he

ad
(m

ul
t.

fa
ct

or
) (b)

Numerical results for x2 mod N with logN = 512 bits.

Here: make transformation x2 mod N⇒ (kx)2 mod k2N
39

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of strong claw-free property helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

40

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of strong claw-free property helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

40

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of strong claw-free property helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

40

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of strong claw-free property helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

40

Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?

41

Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?

41

Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?

41

Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Lots of time and space overhead!

Can we “measure them away” instead?

41

Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?
41

Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N in depth 105 (and can be improved?)

42

Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N in depth 105 (and can be improved?)

42

Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N in depth 105 (and can be improved?)

42

Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N in depth 105 (and can be improved?)

42

Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!

1024-bit x2 mod N in depth 105 (and can be improved?)

42

Technique: taking out the garbage

Measure garbage bits gf (x) in X basis, get some string h. End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉+ (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N in depth 105 (and can be improved?)

42

IQP circuits [Shepherd and Bremner, ’08]

Consider a matrix P ∈ {0, 1}k×n and “action” θ.

Let H =
∑

i
∏

j X
Pij
j .

Example:
H = X0X1X3 + X1X2X4X5 + · · · (2)

Distribution of sampling result X:

Pr[X = x] =
∣∣∣〈x ∣∣∣ e−iHθ

∣∣∣0〉∣∣∣2 (3)

Bremner, Jozsa, Shepherd ’11: classically sampling worst-case IQP circuits would collapse
polynomial heirarchy

Bremner, Montanaro, Shepherd ’16: average case is likely hard as well

43

IQP circuits [Shepherd and Bremner, ’08]

Consider a matrix P ∈ {0, 1}k×n and “action” θ.

Let H =
∑

i
∏

j X
Pij
j .

Example:
H = X0X1X3 + X1X2X4X5 + · · · (2)

Distribution of sampling result X:

Pr[X = x] =
∣∣∣〈x ∣∣∣ e−iHθ

∣∣∣0〉∣∣∣2 (3)

Bremner, Jozsa, Shepherd ’11: classically sampling worst-case IQP circuits would collapse
polynomial heirarchy

Bremner, Montanaro, Shepherd ’16: average case is likely hard as well

43

IQP circuits [Shepherd and Bremner, ’08]

Consider a matrix P ∈ {0, 1}k×n and “action” θ.

Let H =
∑

i
∏

j X
Pij
j .

Example:
H = X0X1X3 + X1X2X4X5 + · · · (2)

Distribution of sampling result X:

Pr[X = x] =
∣∣∣〈x ∣∣∣ e−iHθ

∣∣∣0〉∣∣∣2 (3)

Bremner, Jozsa, Shepherd ’11: classically sampling worst-case IQP circuits would collapse
polynomial heirarchy

Bremner, Montanaro, Shepherd ’16: average case is likely hard as well

43

IQP circuits [Shepherd and Bremner, ’08]

Consider a matrix P ∈ {0, 1}k×n and “action” θ.

Let H =
∑

i
∏

j X
Pij
j .

Example:
H = X0X1X3 + X1X2X4X5 + · · · (2)

Distribution of sampling result X:

Pr[X = x] =
∣∣∣〈x ∣∣∣ e−iHθ

∣∣∣0〉∣∣∣2 (3)

Bremner, Jozsa, Shepherd ’11: classically sampling worst-case IQP circuits would collapse
polynomial heirarchy

Bremner, Montanaro, Shepherd ’16: average case is likely hard as well

43

IQP proof of quantumness [Shepherd and Bremner, ’08]

Let θ = π/8, and s (secret) and P have the form:

Gᵀ is generator of Quadratic Residue code, R random.

Pr[Xᵀ · s = 0] = E
x

[
cos2

(π
8
(1− 2wt(Gx))

)]
QR code: codewords have wt(c) mod 4 ∈ {0,−1}

44

IQP proof of quantumness [Shepherd and Bremner, ’08]

Let θ = π/8, and s (secret) and P have the form:

Gᵀ is generator of Quadratic Residue code, R random.

Pr[Xᵀ · s = 0] = E
x

[
cos2

(π
8
(1− 2wt(Gx))

)]

QR code: codewords have wt(c) mod 4 ∈ {0,−1}

44

IQP proof of quantumness [Shepherd and Bremner, ’08]

Let θ = π/8, and s (secret) and P have the form:

Gᵀ is generator of Quadratic Residue code, R random.

Pr[Xᵀ · s = 0] = E
x

[
cos2

(π
8
(1− 2wt(Gx))

)]
QR code: codewords have wt(c) mod 4 ∈ {0,−1}

44

IQP proof of quantumness [Shepherd and Bremner, ’08]

Let θ = π/8, and s (secret) and P have the form:

Gᵀ is generator of Quadratic Residue code, R random.

Pr[Xᵀ · s = 0] = cos2
(π
8

)
≈ 0.85

QR code: codewords have wt(c) mod 4 ∈ {0,−1}

44

IQP: Hiding s

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] = ?

Scrambling preserves quantum success rate.

Conjecture [SB ’08]: Scrambling P cryptographically hides G (and equivalently s)

45

IQP: Hiding s

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] = ?

Scrambling preserves quantum success rate.

Conjecture [SB ’08]: Scrambling P cryptographically hides G (and equivalently s)

45

IQP: Hiding s

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] = ?

Scrambling preserves quantum success rate.

Conjecture [SB ’08]: Scrambling P cryptographically hides G (and equivalently s)

45

IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] ?

= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of
embedded code.

Consider choosing random d $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:

QR code codewords are 50% even parity, 50% odd parity.

46

IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] ?

= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of
embedded code.

Consider choosing random d $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:

QR code codewords are 50% even parity, 50% odd parity.

46

IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] ?

= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of
embedded code.

Consider choosing random d $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:
y · s =

∑
p∈rows(P)
p·d=1

p · s (mod 2)

QR code codewords are 50% even parity, 50% odd parity.

46

IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] ?

= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of
embedded code.

Consider choosing random d $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:
y · s =

∑
p∈rows(P)
p·d=p·s=1

1 (mod 2)

QR code codewords are 50% even parity, 50% odd parity.

46

IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] ?

= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of
embedded code.

Consider choosing random d $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:
y · s =

∑
p∈rows(P)
p·s=1

p · d (mod 2)

QR code codewords are 50% even parity, 50% odd parity.

46

IQP: Classical strategy

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Best classical: Pr[Yᵀ · s = 0] ?

= 0.5

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of
embedded code.

Consider choosing random d $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=1

p

Then:
y · s = wt(Gd) (mod 2)

QR code codewords are 50% even parity, 50% odd parity.
46

IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Classical: Pr[Yᵀ · s = 0] ?

= 0.5

Consider choosing random d, e $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!

47

IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Classical: Pr[Yᵀ · s = 0] ?

= 0.5

Consider choosing random d, e $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!

47

IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Classical: Pr[Yᵀ · s = 0] ?

= 0.5

Consider choosing random d, e $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:
y · s =

∑
p∈rows(P)
p·d=p·e=1

p · s (mod 2)

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!

47

IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Classical: Pr[Yᵀ · s = 0] ?

= 0.5

Consider choosing random d, e $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:
y · s =

∑
p∈rows(P)
p·s=1

(p · d)(p · e) (mod 2)

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!

47

IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Classical: Pr[Yᵀ · s = 0] ?

= 0.5

Consider choosing random d, e $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:
y · s = (Gd) · (Ge) (mod 2)

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!

47

IQP: Classical strategy [SB ’08]

Quantum: Pr[Xᵀ · s = 0] ≈ 0.85
Classical: Pr[Yᵀ · s = 0] = 0.75

Consider choosing random d, e $← {0, 1}n, and letting

y =
∑

p∈rows(P)
p·d=p·e=1

p

Then:
y · s = (Gd) · (Ge) (mod 2)

Fact: (Gd) · (Ge) = 1 iff Gd, Ge both have odd parity.

Thus y · s = 0 with probability 3/4!

47

IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d $← {0, 1}n, held constant
over many different ei

$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0
Let yi form rows of a matrix M, such that Ms = 0

Can solve for s! ... If M has high rank. Empirically it does!

48

IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d $← {0, 1}n, held constant
over many different ei

$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0
Let yi form rows of a matrix M, such that Ms = 0

Can solve for s! ... If M has high rank. Empirically it does!

48

IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d $← {0, 1}n, held constant
over many different ei

$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0

Let yi form rows of a matrix M, such that Ms = 0
Can solve for s! ... If M has high rank. Empirically it does!

48

IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d $← {0, 1}n, held constant
over many different ei

$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0
Let yi form rows of a matrix M, such that Ms = 0

Can solve for s! ... If M has high rank. Empirically it does!

48

IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d $← {0, 1}n, held constant
over many different ei

$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0
Let yi form rows of a matrix M, such that Ms = 0

Can solve for s! ... If M has high rank.

Empirically it does!

48

IQP: Can we do better classically? [GDKM ’19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random d $← {0, 1}n, held constant
over many different ei

$← {0, 1}n

yi =
∑

p∈rows(P)
p·d=p·ei=1

p

yi · s = 1 iff Gd, Gei both have odd parity.

Gd has even parity⇒ all yi · s = 0
Let yi form rows of a matrix M, such that Ms = 0

Can solve for s! ... If M has high rank. Empirically it does! 48

IQP: can it be fixed?

• Attack relies on properties of QR code

• Could pick a different G for which this attack would not succeed?
• Ultimately, would like to rely on standard cryptographic assumptions...

49

IQP: can it be fixed?

• Attack relies on properties of QR code
• Could pick a different G for which this attack would not succeed?

• Ultimately, would like to rely on standard cryptographic assumptions...

49

IQP: can it be fixed?

• Attack relies on properties of QR code
• Could pick a different G for which this attack would not succeed?
• Ultimately, would like to rely on standard cryptographic assumptions...

49

Quantum circuits for x2 mod N

Goal: U |x〉 |0〉 = |x〉 |x2 mod N〉

Idea: do something really quantum: compute function in phase!

Decompose this as
U = (I⊗ IQFTN) · Ũ · (I⊗QFTN)

with
Ũ |x〉 |z〉 = exp

(
2πi x

2

N
z
)
|x〉 |z〉

Advantages:

• Everything is diagonal (it’s just a phase)!
• Modulo is automatic in the phase
• Simple decomposition into few-qubit gates

50

Quantum circuits for x2 mod N

Goal: U |x〉 |0〉 = |x〉 |x2 mod N〉

Idea: do something really quantum: compute function in phase!

Decompose this as
U = (I⊗ IQFTN) · Ũ · (I⊗QFTN)

with
Ũ |x〉 |z〉 = exp

(
2πi x

2

N
z
)
|x〉 |z〉

Advantages:

• Everything is diagonal (it’s just a phase)!
• Modulo is automatic in the phase
• Simple decomposition into few-qubit gates

50

Quantum circuits for x2 mod N

Goal: U |x〉 |0〉 = |x〉 |x2 mod N〉

Idea: do something really quantum: compute function in phase!

Decompose this as
U = (I⊗ IQFTN) · Ũ · (I⊗QFTN)

with
Ũ |x〉 |z〉 = exp

(
2πi x

2

N
z
)
|x〉 |z〉

Advantages:

• Everything is diagonal (it’s just a phase)!
• Modulo is automatic in the phase
• Simple decomposition into few-qubit gates

50

Quantum circuits for x2 mod N

Goal: U |x〉 |0〉 = |x〉 |x2 mod N〉

Idea: do something really quantum: compute function in phase!

Decompose this as
U = (I⊗ IQFTN) · Ũ · (I⊗QFTN)

with
Ũ |x〉 |z〉 = exp

(
2πi x

2

N
z
)
|x〉 |z〉

Advantages:

• Everything is diagonal (it’s just a phase)!
• Modulo is automatic in the phase
• Simple decomposition into few-qubit gates

50

Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

Decompose using “grade school” integer multiplication:

a · b =
∑
i,j

2i+jaibj

x2z =
∑
i,j,k

2i+j+kxixjzk

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

51

Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

Decompose using “grade school” integer multiplication:

a · b =
∑
i,j

2i+jaibj

x2z =
∑
i,j,k

2i+j+kxixjzk

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

51

Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

Decompose using “grade school” integer multiplication:

a · b =
∑
i,j

2i+jaibj

x2z =
∑
i,j,k

2i+j+kxixjzk

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

51

Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

• Binary multiplication is AND

• “Apply phase whenever xi = xj = zk = 1”
• These are CCPhase gates (of arb. phase)!

52

Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

• Binary multiplication is AND
• “Apply phase whenever xi = xj = zk = 1”

• These are CCPhase gates (of arb. phase)!

52

Implementation

New goal: Ũ |x〉 |z〉 = exp
(
2πi x

2

N z
)
|x〉 |z〉

exp

(
2πi x

2

N
z
)

=
∏
i,j,k

exp

(
2πi2

i+j+k

N
xixjzk

)

• Binary multiplication is AND
• “Apply phase whenever xi = xj = zk = 1”
• These are CCPhase gates (of arb. phase)!

52

Leveraging the Rydberg blockade

QFT Ũ IQFT

53

Leveraging the Rydberg blockade

QFT Ũ IQFT

53

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group G of order N, with generator g.
Given the tuple (g,ga,gb,gc), determine if c = ab.

Elliptic curve crypto.: logN ∼ 160 bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters ’08; Freeman et al. ’10]: linear algebra in the exponent

Claw-free [GDKM et al. ’21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

54

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group G of order N, with generator g.
Given the tuple (g,ga,gb,gc), determine if c = ab.

Elliptic curve crypto.: logN ∼ 160 bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters ’08; Freeman et al. ’10]: linear algebra in the exponent

Claw-free [GDKM et al. ’21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

54

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group G of order N, with generator g.
Given the tuple (g,ga,gb,gc), determine if c = ab.

Elliptic curve crypto.: logN ∼ 160 bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters ’08; Freeman et al. ’10]: linear algebra in the exponent

Claw-free [GDKM et al. ’21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

54

Full protocol

55

