Classical verification of quantum computation

Greg Kahanamoku-Meyer
May 3, 2022

Focus of today

How can we demonstrate that a supposed "quantum computer" is actually doing something non-classical?

Focus of today

How can we demonstrate that a supposed "quantum computer" is actually doing something non-classical?
... or

How can we demonstrate that quantum computing in practice can do something non-classical?

Focus of today

How can we demonstrate that a supposed "quantum computer" is actually doing something non-classical?
... or ...

How can we demonstrate that quantum computing in practice can do something non-classical?

Setting:

- Single quantum "prover" (computational demonstration)

Focus of today

How can we demonstrate that a supposed "quantum computer" is actually doing something non-classical?
... Or
r ...

How can we demonstrate that quantum computing in practice can do something non-classical?

Setting:

- Single quantum "prover" (computational demonstration)
- "Verifier" + communication is entirely classical

Focus of today

How can we demonstrate that a supposed "quantum computer" is actually doing something non-classical?
... or
r ...

How can we demonstrate that quantum computing in practice can do something non-classical?

Setting:

- Single quantum "prover" (computational demonstration)
- "Verifier" + communication is entirely classical
- No assumptions about how prover works

Quantum computational advantage

Experiments claiming that their output can't be simulated classically:

Random circuit sampling [Google, 2019]

Gaussian boson sampling [USTC, 2020]

Quantum computational advantage

Experiments claiming that their output can't be simulated classically:

Random circuit sampling [Google, 2019]

Gaussian boson sampling [USTC, 2020]

- How hard is it really to classically simulate?
- If indeed we can't simulate, how do we check that it's correct?

How hard is it to classically simulate?

Focusing on Google's random circuit sampling experiment with 53 qubits: Complexity theory suggests it's hard.

How hard is it to classically simulate?

Focusing on Google's random circuit sampling experiment with 53 qubits:
Complexity theory suggests it's hard. But...

What does it mean for a computation to be classically hard?

What does it mean to be classically hard?

Complexity theory
All about asymptotics. Example:
"Simulating the generic evolution of n qubits takes time that scales as $\mathcal{O}\left(2^{n}\right)^{\prime \prime}$

What does it mean to be classically hard?

Complexity theory
All about asymptotics. Example:
"Simulating the generic evolution of n qubits takes time that scales as $\mathcal{O}\left(2^{n}\right)^{\prime \prime}$
"hard" ~ "superpolynomial"

What does it mean to be classically hard?

Complexity theory
All about asymptotics. Example:
"Simulating the generic evolution of n qubits takes time that scales as $\mathcal{O}\left(2^{n}\right)^{\prime \prime}$
"hard" ~ "superpolynomial"

In practice
We care about actual resource costs for a specific instance of the problem. Ex:
"Simulating this depth-20 circuit on 20 qubits takes 10 minutes." (not hard)

What does it mean to be classically hard?

Complexity theory
All about asymptotics. Example:
"Simulating the generic evolution of n qubits takes time that scales as $\mathcal{O}\left(2^{n}\right)^{\prime \prime}$
"hard" ~ "superpolynomial"

In practice
We care about actual resource costs for a specific instance of the problem. Ex:
"Simulating this depth-20 circuit on 20 qubits takes 10 minutes." (not hard)
"hard" ~ "takes unrealistic resources"

What does it mean to be classically hard?

Complexity theory
All about asymptotics. Example:
"Simulating the generic evolution of n qubits takes time that scales as $\mathcal{O}\left(2^{n}\right)^{\prime \prime}$
"hard" ~ "superpolynomial"

In practice
We care about actual resource costs for a specific instance of the problem. Ex:
"Simulating this depth-20 circuit on 20 qubits takes 10 minutes." (not hard)
"hard" ~ "takes unrealistic resources"

Takeaway: Complexity theory tells us how the hardness of a problem scales, but not the actual cost for specific instances.

What does it mean to be classically hard?

Complexity theory
All about asymptotics. Example:
"Simulating the generic evolution of n qubits takes time that scales as $\mathcal{O}\left(2^{n}\right)^{\prime \prime}$
"hard" ~ "superpolynomial"

In practice
We care about actual resource costs for a specific instance of the problem. Ex:
"Simulating this depth-20 circuit on 20 qubits takes 10 minutes." (not hard)
"hard" ~ "takes unrealistic resources"

Takeaway: Complexity theory tells us how the hardness of a problem scales, but not the actual cost for specific instances.

Best strategy for finding cost in practice: have a bunch of people try it.

Quantum computational advantage

Experiments claiming that their output can't be simulated classically:

Random circuit sampling [Google, 2019]

Gaussian boson sampling [USTC, 2020]

- How hard is it really to classically simulate?
- If indeed we can't simulate, how do we check that it's correct?

Random circuit sampling: checking correctness

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.
"The device works correctly on the easy ones, so it probably also works on the hard one"

Random circuit sampling: checking correctness

Idea: extrapolate correctness from simpler circuits.
"The device works correctly on the easy ones, so it probably also works on the hard one" Ideally:

- Remove need for extrapolations/assumptions in verification process
- Not need a supercomputer to do it

Robust, verifiable quantum computational advantage

We want a test with three properties:

Robust, verifiable quantum computational advantage

We want a test with three properties:

- Easy for quantum device to pass

Robust, verifiable quantum computational advantage

We want a test with three properties:

- Easy for quantum device to pass
- Hard for classical computer to pass*

Robust, verifiable quantum computational advantage

We want a test with three properties:

- Easy for quantum device to pass
- Hard for classical computer to pass*
- Easy for classical computer to verify

Robust, verifiable quantum computational advantage

We want a test with three properties:

- Easy for near-term quantum device to pass
* with well-studied practical hardness!
- Hard for classical supercomputer to pass*
- Easy for classical laptop computer to verify

Robust, verifiable quantum computational advantage

We want a test with three properties:

- Easy for near-term quantum device to pass
* with well-studied practical hardness!
- Hard for classical supercomputer to pass*
- Easy for classical laptop computer to verify

Remote: validate an untrusted quantum device over the internet
"Website proves its power to user"

Robust, verifiable quantum computational advantage

We want a test with three properties:

- Easy for near-term quantum device to pass
- Hard for classical supercomputer to pass*
- Easy for classical laptop computer to verify
* with well-studied practical hardness!

10100111100
11010110011
11101100 (
10011000
emote: validate an untrusted quantum device over the internet
"Website proves its power to user"

Local: robust demonstration of the power of quantum computation "Qubits prove their power to humanity"

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.
Many other applications: authentication, digital signatures, multi-party computation, ...

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ... Digital signature/cryptographic proof:

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ... Digital signature/cryptographic proof:

- Easy for signer (on a laptop) to create signature

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ... Digital signature/cryptographic proof:

- Easy for signer (on a laptop) to create signature
- Hard for even supercomputer to forge a signature

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ... Digital signature/cryptographic proof:

- Easy for signer (on a laptop) to create signature
- Hard for even supercomputer to forge a signature
- Easy for recipient (on a laptop) to verify signature

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ... Digital signature/cryptographic proof:

- Easy for signer (on a laptop) to create signature
- Hard for even supercomputer to forge a signature
- Easy for recipient (on a laptop) to verify signature

Connection to cryptography

"Making sure certain things computationally hard, while keeping others easy."

Encryption: should be hard in practice for eavesdropper to discover the secret message; easy for intended recipient.

Many other applications: authentication, digital signatures, multi-party computation, ... Digital signature/cryptographic proof:

- Easy for signer (on a laptop) to create signature
- Hard for even supercomputer to forge a signature
- Easy for recipient (on a laptop) to verify signature

Our goal: a "cryptographic proof of quantumness"

Near-term verifiable quantum advantage

Trivial solution: Shor's algorithm

Near-term verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

Near-term verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

Sampling problems

Number theory problems

e.g. random circuits, Boson sampling, ...
\checkmark NISQ feasible
x Efficiently verifiable
e.g. factoring, discrete logarithm, ...
x NISQ feasible
\checkmark Efficiently verifiable

???
\checkmark NISQ feasible
\checkmark Efficiently verifiable

Adding structure to sampling problems

Generically: seems hard.

The point of random circuits is that they don't have structure!

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{gathered}
\text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
\text { Quantum: } \sim 85 \% \\
\text { Classical: } \leq 75 \%
\end{gathered}
$$

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{gathered}
\text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
\text { Quantum: } \sim 85 \% \\
\text { Classical: } \leq 75 \%
\end{gathered}
$$

For proof, collect many (unique) samples, and statistically establish that $p_{\bar{x} \cdot \mathbf{s}}>75 \%$

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{aligned}
& \text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
& \text { Quantum: } \sim 85 \% \quad \text { Classical: } \leq 75 \% \\
& \text { For proof, collect many (unique) samples, and statistically establish that } p_{\vec{x} \cdot \mathbf{s}}>75 \%
\end{aligned}
$$

- Easy for quantum device to pass: yes

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{aligned}
& \text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
& \text { Quantum: } \sim 85 \% \quad \text { Classical: } \leq 75 \% \\
& \text { For proof, collect many (unique) samples, and statistically establish that } p_{\vec{x} \cdot \mathbf{s}}>75 \%
\end{aligned}
$$

- Easy for quantum device to pass: yes
- Easy for classical computer to verify: yes

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
\text { Quantum: } \sim 85 \% \quad \text { Classical: } \leq 75 \% \\
\text { For proof, collect many (unique) samples, and statistically establish that } p_{\vec{x} \cdot \mathbf{s}}>75 \%
\end{array}
\end{aligned}
$$

- Easy for quantum device to pass: yes
- Easy for classical computer to verify: yes
- Hard for classical computer to cheat: hopefully?

IQP

Example: sampling "IQP" circuits (products of Pauli X 's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{aligned}
& \text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
& \text { Quantum: } \sim 85 \% \quad \text { Classical: } \leq 75 \% \\
& \text { For proof, collect many (unique) samples, and statistically establish that } p_{\vec{x} \cdot \mathbf{s}}>75 \%
\end{aligned}
$$

- Easy for quantum device to pass: yes
- Easy for classical computer to verify: yes
- Hard for classical computer to cheat: hopefully?
- Is it possible to simulate this class of circuits?

IQP

Example: sampling "IQP" circuits (products of Pauli X's)

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

[Shepherd, Bremner 2009] Claim: Can hide a secret \vec{s} in H, such that:

$$
\begin{aligned}
& \text { Fraction of measurement results with } \vec{x} \cdot \vec{s}=0 \text { : } \\
& \text { Quantum: } \sim 85 \% \quad \text { Classical: } \leq 75 \% \\
& \text { For proof, collect many (unique) samples, and statistically establish that } p_{\vec{x} \cdot \mathbf{s}}>75 \%
\end{aligned}
$$

- Easy for quantum device to pass: yes
- Easy for classical computer to verify: yes
- Hard for classical computer to cheat: hopefully?
- Is it possible to simulate this class of circuits?
- Is there some way to pass the test without simulating the circuit?

The $\$ 25$ challenge

Alice's quantum challenge
C'mon Bob, show us how quantum you really are

IQP: is it possible to simulate classically?

> Classical simulation of commuting
> quantum computations implies collapse of the polynomial hierarchy
> BY MICHAEL J. Bremner $^{1, *,}$, RICHARD JozsA ${ }^{2}$ AND DAN J. SHEPHERD ${ }^{3}$
> ${ }^{1}$ Institut für Theoretische Physik, Leibniz Universität Hannover,
> Appelstrasse 2, Hannover 30167, Germany
> ${ }^{2}$ DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wiberforce Road, Cambridge CB3 0WA, UK
> ${ }^{3}$ CESG, Hubble Road, Cheltenham GL51 OEX, UK

| PRL 117, 080501 (2016) | PHYSIC AL | REVIEW | LETTERS |
| :--- | :--- | :--- | :--- | | week ending |
| :---: |

Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations

[^0]
IQP: is it possible to simulate classically?

> Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy
> BY MICHAEL J. Bremner $^{1, *,}$, RICHARD JozsA ${ }^{2}$ AND DAN J. SHEPHERD ${ }^{3}$
> ${ }^{1}$ Institut für Theoretische Physik, Leibniz Universität Hannover,
> Appelstrasse 2, Hannover 30167, Germany
> ${ }^{2}$ DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wiberforce Road, Cambridge CB3 0WA, UK
> ${ }^{3}$ CESG, Hubble Road, Cheltenham GL51 OEX, UK

$$
\begin{gathered}
\text { PRL 117, } 080501 \text { (2016) PHYS IC A L R E V IE W LETTERS } \\
\hline \text { Average-Case Complexity Versus Approximate Simulation of Commuting } \\
\text { Quantum Computations } \\
\text { Week } \\
\text { Michael J. Bremner, }{ }^{19, *} \text { Ashley Montanaro, }{ }^{2} \text { and Dan J. Shepherd }{ }^{3} \\
{ }^{\text {1 }} \text { Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, } \\
\text { University of Technology Sydney, Sydney, NSW 2007, Australia } \\
{ }^{2} \text { School of Mathematics, University of Bristol, Bristol BS8 ITW, United Kingdom } \\
{ }^{3} \text { CESG, Hubble Road, Cheltenham GL51 OEX, United Kingdom }
\end{gathered}
$$

... and in practice, it seems to be infeasible for >50 qubits...

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with $\vec{x} \cdot \vec{s}=0$:
Quantum: $\sim 85 \% \quad$ Classical: $\leq 75 \%$

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with $\vec{x} \cdot \vec{s}=0$:
Quantum: ~85\% Classical: $\leq 75 \%$

Key: for a given H (and thus \vec{s}) one can classically generate sets of correlated samples.

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with $\vec{x} \cdot \vec{s}=0$:
Quantum: ~85\% Classical: $\leq 75 \%$

Key: for a given H (and thus \vec{s}) one can classically generate sets of correlated samples.

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with $\vec{x} \cdot \vec{s}=0$:
Quantum: ~85\% Classical: $\leq 75 \%$

Key: for a given H (and thus \vec{s}) one can classically generate sets of correlated samples.

IQP: is it possible to pass without simulating the circuit?

Fraction of measurement results with $\vec{x} \cdot \vec{s}=0$:
Quantum: $\sim 85 \% \quad$ Classical: $\leq 75 \%$
Key: for a given H (and thus \vec{s}) one can classically generate sets of correlated samples.

		Q: why doesn't this immediately break the protocol?
	w/ prob. $1 / 2$	
75\%		In 100\% case, get a system of equations
always	50\%	in 100\% case, get a system of equations
	w/ prob. $1 / 2$	With knowledge of \vec{s}, trivial to classically pass test.

Breaking the IQP protocol

Trying it against their verification code...
\$./IQPwn challenge.dat

Breaking the IQP protocol

Trying it against their verification code...

```
$ ./IQPwn challenge.dat
Loading X-program at 'challenge.dat'...
Extracting secret key...
Generating samples...
Samples written to file 'response.dat'
$ 
```


Breaking the IQP protocol

Trying it against their verification code...

```
$ ./IQPwn challenge.dat
Loading X-program at 'challenge.dat'...
Extracting secret key...
Generating samples...
Samples written to file 'response.dat'
$ ./verify response.dat
```


Breaking the IQP protocol

Trying it against their verification code...

```
$ ./IQPwn challenge.dat
Loading X-program at 'challenge.dat'...
Extracting secret key...
Generating samples...
Samples written to file 'response.dat'
$ ./verify response.dat
Congratulations; you have what appears to be a
working quantum computer!
Dataset accepted as proof!
$
```


Near-term verifiable quantum advantage

NISQ: Noisy Intermediate-Scale Quantum devices

Sampling problems

Number theory problems
e.g. random circuits, Boson sampling, ...
e.g. factoring, discrete logarithm, ...
\checkmark NISQ feasible
x Efficiently verifiable
X NISQ feasible
\checkmark Efficiently verifiable

???
\checkmark NISQ feasible
\checkmark Efficiently verifiable

Making number theoretic problems less costly

Fully solving a problem like factoring is "overkill"

Making number theoretic problems less costly

Fully solving a problem like factoring is "overkill"
Can we demonstrate quantum capability without needing to solve such a hard problem?

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not. How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50\% chance of passing-iterate for exponential certainty.

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

1. You show them one ball, then hide it behind your back
2. You pull out another, they tell you same or different

Impostor has 50% chance of passing-iterate for exponential certainty.
This constitutes a zero-knowledge interactive proof.

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color? without ever telling you the colors?

This constitutes a zero-knowledge interactive proof.

$$
\begin{aligned}
& \text { You (color blind) } \Leftrightarrow \text { Classical verifier } \\
& \text { Seeing color } \Leftrightarrow \text { Quantum capability }
\end{aligned}
$$

Zero-knowledge proofs: differentiating colors

You are red/green colorblind, your friend is not.
How can they use a red ball and green ball to convince you that they see color?
without ever telling you the colors?

This constitutes a zero-knowledge interactive proof.

$$
\begin{aligned}
& \text { You (color blind) } \Leftrightarrow \text { Classical verifier } \\
& \text { Seeing color } \Leftrightarrow \text { Quantum capability }
\end{aligned}
$$

Goal: find protocol as verifiable and classically hard as factoringbut less expensive than actually finding factors (via Shor)

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to holding a specific quantum state
Round 2: Verifier asks for measurement in specific basis, prover performs it

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to holding a specific quantum state
Round 2: Verifier asks for measurement in specific basis, prover performs it

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in any basis

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

Prover has committed to the state $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

State commitment (round 1): trapdoor claw-free functions

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

State commitment (round 1): trapdoor claw-free functions

```
Prover has committed to (|\mp@subsup{x}{0}{}\rangle+|\mp@subsup{x}{1}{}\rangle)|y\rangle\mathrm{ with }y=f(\mp@subsup{x}{0}{})=f(\mp@subsup{x}{1}{})
```

Source of power: cryptographic properties of 2-to-1 function f

- "Claw-free": It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

Generating a valid state without trapdoor uses superposition + wavefunction collapse-inherently quantum!

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Properties:

- Claw-free: Easy to compute p, q given a colliding pair-thus finding collisions is as hard as factoring. This is called a reduction

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Properties:

- Claw-free: Easy to compute p, q given a colliding pair-thus finding collisions is as hard as factoring. This is called a reduction
- Trapdoor: Function is easily inverted with knowledge of p, q

Trapdoor claw-free function example

$$
f(x)=x^{2} \bmod N \text {, where } N=p q
$$

Function is actually 4-to-1 but collisions like $\{x,-x\}$ are trivial-set domain to integers in range [0, N/2].

Properties:

- Claw-free: Easy to compute p,q given a colliding pair-thus finding collisions is as hard as factoring. This is called a reduction
- Trapdoor: Function is easily inverted with knowledge of p, q

Example: $4^{2} \equiv 11^{2} \equiv 16(\bmod 35) ;$ and $11-4=7$

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Evaluate f on uniform superposition:
$\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y

Pick trapdoor claw-free function f
\xrightarrow{y} Compute x_{0}, x_{1} from y using trapdoor

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y
Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given
basis

Validate result against x_{0}, x_{1}

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y
Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given
basis
 Compute x_{0}, x_{1} from y using trapdoor Pick Z or X basis
\qquad $\longrightarrow \quad$ Validate result against x_{0}, x_{1}

Z basis: get x_{0} or x_{1}

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Pick trapdoor claw-free function f
 Compute x_{0}, x_{1} from y using trapdoor
\qquad Pick Z or X basis
\qquad $\longrightarrow \quad$ Validate result against x_{0}, x_{1}
Z basis: get x_{0} or x_{1}
X basis: get some bitstring d, such that $d \cdot x_{0}=d \cdot x_{1}$

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Pick trapdoor claw-free function f
 Compute x_{0}, x_{1} from y using trapdoor Pick Z or X basis
\qquad Validate result against x_{0}, x_{1}
Z basis: get x_{0} or x_{1}
X basis: get some bitstring d, such that $d \cdot x_{0}=d \cdot x_{1}$
Hardness of finding $\left(x_{0}, x_{1}\right)$ does not imply hardness of measurement results!

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

 Compute x_{0}, x_{1} from y using trapdoor Pick Z or X basis
result Validate result against x_{0}, x_{1}

Hardness of finding $\left(x_{0}, x_{1}\right)$ does not imply hardness of measurement results!

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

10100111100
 1010110011
 1101100100
 1001100001

 Compute x_{0}, x_{1} from y using trapdoor
basis Pick Z or X basis
result

Hardness of finding $\left(x_{0}, x_{1}\right)$ does not imply hardness of measurement results! Protocol requires strong claw-free property: For any x_{0}, hard to find even a single bit about x_{1}.

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	x
x^{2} mod N [3]	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	x
$x^{2} \bmod N[3]$	\checkmark	\checkmark	\times
Diffie-Hellman [3]	\checkmark	\checkmark	\times

BKWV '20 removes need for strong claw-free property in the random oracle model. [2]
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	X
$x^{2} \bmod N[3]$	\checkmark	\checkmark	\times
Diffie-Hellman [3]	\checkmark	\checkmark	\times

BKWV '20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model?
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

Function family	Trapdoor	Claw-free	Strong claw-free
Learning-with-Errors [1]	\checkmark	\checkmark	\checkmark
Ring Learning-with-Errors [2]	\checkmark	\checkmark	X
$x^{2} \bmod N[3]$	\checkmark	\checkmark	\times
Diffie-Hellman [3]	\checkmark	\checkmark	\times

BKWV '20 removes need for strong claw-free property in the random oracle model. [2]

Can we do the same in the standard model? Yes! [3]
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Aside: the CHSH game (Bell test)

Cooperative two-player game; players can't communicate (non-local).

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Aside: the CHSH game (Bell test)

Cooperative two-player game; players can't communicate (non-local).

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Classical optimal strategy: return equal values, hope you didn't both get heads. 75\% success rate.

Can we do better with entanglement?

Aside: the CHSH game (Bell test)

Cooperative two-player game; players can't communicate (non-local).

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle$

Aside: the CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$

Aside: the CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; \quad antialigned \rightarrow opposite result!

Aside: the CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; \quad antialigned \rightarrow opposite result!

Aside: the CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; antialigned \rightarrow opposite result!

Aside: the CHSH game (Bell test)

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Consider the Bell pair: $|\psi\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle=|\leftarrow \leftarrow\rangle+|\rightarrow \rightarrow\rangle=\cdots$
Aligned basis \rightarrow same result; antialigned \rightarrow opposite result!

> Quantum: $\cos ^{2}(\pi / 8) \approx 85 \%$ Classical: 75%

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Evaluate f on uniform superposition:
$\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y
Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

11101100100
10011000011

Pick trapdoor claw-free function f

Compute x_{0}, x_{1} from y using trapdoor
\qquad Pick Z or X basis
\qquad Validate result against x_{0}, x_{1}

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y
Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Replace X basis measurement with "single-qubit CHSH game"

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Pick random bitstring r

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

- \square
$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Pick random bitstring r

Now 1-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r=x_{1} \cdot r$, otherwise $|+\rangle$ or $|-\rangle$.

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Pick random bitstring r

Now 1-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r=x_{1} \cdot r$, otherwise $|+\rangle$ or $|-\rangle$. Polarization hidden via: Cryptographic secret (here) \Leftrightarrow Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Pick random bitstring r

Measure qubit in basis

Pick $(Z+X)$ or $(Z-X)$ basis Validate against r, x_{0}, x_{1}, d

Interactive measurement: computational Bell test

Two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Measure qubit in basis

Pick $(Z+X)$ or $(Z-X)$ basis Validate against r, x_{0}, x_{1}, d

This protocol can use any trapdoor claw-free function!

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {Bell: }}$ Success rate when performing Bell-type measurement.

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {Bell }}$ Success rate when performing Bell-type measurement.
Under assumption of claw-free function:

$$
\text { Classical bound: } p_{z}+4 p_{\text {Bell }} \lesssim 4
$$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {Bell }}$ Success rate when performing Bell-type measurement.
Under assumption of claw-free function:

$$
\begin{gathered}
\text { Classical bound: } p_{Z}+4 p_{\text {Bell }} \lesssim 4 \\
\text { Ideal quantum: } p_{Z}=1, p_{\text {Bell }}=\cos ^{2}(\pi / 8)
\end{gathered}
$$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {Bell }}$ Success rate when performing Bell-type measurement.
Under assumption of claw-free function:

$$
\begin{gathered}
\text { Classical bound: } p_{Z}+4 p_{\text {Bell }} \lesssim 4 \\
\text { Ideal quantum: } p_{Z}=1, p_{\text {Bell }}=\cos ^{2}(\pi / 8) \\
p_{Z}+4 p_{\text {Bell }}=3+\sqrt{2} \approx 4.414
\end{gathered}
$$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {Bell }}$ Success rate when performing Bell-type measurement.
Under assumption of claw-free function:

$$
\begin{gathered}
\text { Classical bound: } p_{Z}+4 p_{\text {Bell }} \lesssim 4 \\
\text { Ideal quantum: } p_{Z}=1, p_{\text {Bell }}=\cos ^{2}(\pi / 8) \\
p_{Z}+4 p_{\text {Bell }}=3+\sqrt{2} \approx 4.414
\end{gathered}
$$

Note: Let $p_{z}=1$. Then for $p_{\text {Bell }}$:
Classical bound 75%, ideal quantum $\sim 85 \%$. Same as regular Bell test!
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness less well established

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness less well established
- Shor's alg. (and others) verifiable, but not feasible on near-term devices

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness less well established
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness less well established
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor
- Result: new protocol that allows proof of quantumness using any trapdoor claw-free function, including $x^{2} \bmod N$

Overview: efficiently verifiable quantum advantage protocol

- Existing experiments (e.g. random circuits) not verifiable at scale; classical hardness less well established
- Shor's alg. (and others) verifiable, but not feasible on near-term devices
- Idea: use zero-knowledge interactive proof to achieve hardness and verifiability of factoring, without full machinery of Shor
- Result: new protocol that allows proof of quantumness using any trapdoor claw-free function, including $x^{2} \bmod N$

Asymptotically: evaluating $x^{2} \bmod N$ requires $\mathcal{O}(n \log n)$ gates; $a^{x} \bmod N$ in Shor requires $\mathcal{O}\left(n^{2} \log n\right)$

[^1]
Moving towards efficiently-verifiable quantum advantage in the near term

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]

Fidelity (without error correction)
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]

Circuit sizes
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]

Circuit sizes

- Removing need for strong claw-free property allows use of "easier" functions
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards efficiently-verifiable quantum advantage in the near term

Interaction

- Mid-circuit measurement: need to measure subsystem while maintaining coherence on other qubits
- Recent first implementations by experiments! [1]

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme enables passing with ϵ circuit fidelity [2]

Circuit sizes

- Removing need for strong claw-free property allows use of "easier" functions
- Measurement-based uncomputation scheme [2]
[1] GDKM, D. Zhu, et al. '21 (arXiv:2112.05156)
[2] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Intermediate (mid-circuit) measurements

Principle of delayed measurement: delaying all measurements to the end of a circuit doesn't affect the measurement statistics.

Intermediate (mid-circuit) measurements

Principle of delayed measurement: delaying all measurements to the end of a circuit doesn't affect the measurement statistics.

Q: Why is mid-circuit measurement necessary for these protocols?

Intermediate (mid-circuit) measurements

Principle of delayed measurement: delaying all measurements to the end of a circuit doesn't affect the measurement statistics.

Q: Why is mid-circuit measurement necessary for these protocols?
Other applications of mid-circuit measurement:

- Quantum error correction
- Quantum machine learning (QCNN)
- ...

Intermediate measurements in the lab

TIIII 48

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Intermediate measurements in the lab

TIOI
 先

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 48

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 ABE

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 48

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Intermediate measurements in the lab

TIOI
 先

Trapped Ion Quantum Information lab at U. Maryland (\rightarrow Duke)
First demonstration of these protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Interactive proofs on a few qubits

Experimental results for $f(x)=x^{2} \bmod N$
Up and right is stronger evidence of quantumness

GDKM, D. Zhu, et al. (arXiv:2112.05156)

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

- Preliminary implementation of $x^{2} \bmod N$ at scale has depth 10^{5}-optimize it!

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

- Preliminary implementation of $x^{2} \bmod N$ at scale has depth 10^{5}-optimize it!
- Co-design circuits for specific hardware (Rydberg implementation in paper)

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

- Preliminary implementation of $x^{2} \bmod N$ at scale has depth 10^{5}-optimize it!
- Co-design circuits for specific hardware (Rydberg implementation in paper)
- $x^{2} \bmod N$ requires at minimum 500-1000 qubits for classical hardness-search for new claw-free functions?

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

- Preliminary implementation of $x^{2} \bmod N$ at scale has depth 10^{5}-optimize it!
- Co-design circuits for specific hardware (Rydberg implementation in paper)
- $x^{2} \bmod N$ requires at minimum 500-1000 qubits for classical hardness-search for new claw-free functions?

Improving the protocol itself:

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

- Preliminary implementation of $x^{2} \bmod N$ at scale has depth 10^{5}-optimize it!
- Co-design circuits for specific hardware (Rydberg implementation in paper)
- $x^{2} \bmod N$ requires at minimum 500-1000 qubits for classical hardness-search for new claw-free functions?

Improving the protocol itself:

- Remove trapdoor-symmetric key/hash-based cryptography [arXiv:2204.02063]

Looking forward

Bottleneck: Evaluating TCF on quantum superposition

Improving implementation of the protocol:

- Preliminary implementation of $x^{2} \bmod N$ at scale has depth 10^{5}-optimize it!
- Co-design circuits for specific hardware (Rydberg implementation in paper)
- $x^{2} \bmod N$ requires at minimum 500-1000 qubits for classical hardness-search for new claw-free functions?

Improving the protocol itself:

- Remove trapdoor-symmetric key/hash-based cryptography [arXiv:2204.02063]
- Explore other protocols (verifiable sampling with good security?)

References + further reading

Numbers below are arXiv IDs; go to arxiv.org/abs/xxxx.xxxxx
Proofs of quantumness

- IQP sampling protocol [0809.0847]
- Breaking IQP protocol [1912.05547]
- First interactive proof based on trapdoor claw-free functions [1804.00640]
- Removing assumptions via random oracles [2005.04826]
- Removing assumptions via computational Bell test [2104.00687]
- Single-prover proofs from any multi-prover quantum game [2203.15877]
- Proofs using only random oracles [2204.02063]

Other applications of quantum interactive proofs

- Certifiable quantum randomness [1804.00640]
- Remote state preparation [1904.06320]
- Verification of arbitrary quantum computations (!) [1804.01082]

Backup!

Hardness proof: rewinding

Prover

Verifier

10100111100 11010110011
11101100100
10011000011

From a "proof of hardness" perspective:

Hardness proof: rewinding

Verifier

10100111100
11010110011
11101100100
10011000011

From a "proof of hardness" perspective:

- Classical cheater can be "rewound"
- Save state of prover after first round of interaction
- Extract measurement results in all choices of basis

Hardness proof: rewinding

Prover

Verifier

10100111100
11010110011
11101100100
10011000011

From a "proof of hardness" perspective:

- Classical cheater can be "rewound"
- Save state of prover after first round of interaction
- Extract measurement results in all choices of basis
- Quantum prover's measurements are irreversible

Hardness proof: rewinding

From a "proof of hardness" perspective:

- Classical cheater can be "rewound"
- Save state of prover after first round of interaction
- Extract measurement results in all choices of basis
- Quantum prover's measurements are irreversible
"Rewinding" proof of hardness doesn't go through for quantum prover-can even use functions that are quantum claw-free!

Technique: postselection

How to deal with high fidelity requirement? Naively need $\sim 83 \%$ overall circuit fidelity to pass.

Technique: postselection

How to deal with high fidelity requirement? Naively need $\sim 83 \%$ overall circuit fidelity to pass.

A prover holding $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with ϵ phase coherence passes!

Technique: postselection

How to deal with high fidelity requirement? Naively need $\sim 83 \%$ overall circuit fidelity to pass.

A prover holding $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with ϵ phase coherence passes!
When we generate $\sum_{x}|x\rangle|f(x)\rangle$, add redundancy to $f(x)$, for bit flip error detection!

Technique: postselection

How to deal with high fidelity requirement? Naively need $\sim 83 \%$ overall circuit fidelity to pass.

Numerical results for $x^{2} \bmod N$ with $\log N=512$ bits.
Here: make transformation $x^{2} \bmod N \Rightarrow(k x)^{2} \bmod k^{2} N$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of strong claw-free property helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of strong claw-free property helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$ but they are recursive and hard to make reversible.

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of strong claw-free property helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$ but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity

Classical AND

Quantum AND (Toffoli)

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:
$|x\rangle \equiv$
$|0\rangle \equiv \mathcal{U}_{f}^{\prime}$
$\equiv|x\rangle$
$|0\rangle \equiv\left|g_{f}(x)\right\rangle$

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Lots of time and space overhead!

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Can we "measure them away" instead?

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{n \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{n \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum!

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in X basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{n \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum! 1024 -bit $x^{2} \bmod N$ in depth 10^{5} (and can be improved?)

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.
Let $H=\sum_{i} \prod_{j} X_{j}^{P_{i j}}$.
Example:

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{2}
\end{equation*}
$$

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

Let $H=\sum_{i} \Pi_{j} X_{j}^{P_{i j}}$.
Example:

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{2}
\end{equation*}
$$

Distribution of sampling result X :

$$
\begin{equation*}
\left.\operatorname{Pr}[X=x]=\left|\langle x| e^{-i H \theta}\right| 0\right\rangle\left.\right|^{2} \tag{3}
\end{equation*}
$$

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

Let $H=\sum_{i} \prod_{j} X_{j}^{P_{i j}}$.
Example:

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{2}
\end{equation*}
$$

Distribution of sampling result X :

$$
\begin{equation*}
\left.\operatorname{Pr}[X=x]=\left|\langle x| e^{-i H \theta}\right| 0\right\rangle\left.\right|^{2} \tag{3}
\end{equation*}
$$

Bremner, Jozsa, Shepherd '11: classically sampling worst-case IQP circuits would collapse polynomial heirarchy

Bremner, Montanaro, Shepherd '16: average case is likely hard as well

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{R}
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

$$
\operatorname{Pr}\left[X^{\top} \cdot s=0\right]=\underset{X}{\mathbb{E}}\left[\cos ^{2}\left(\frac{\pi}{8}(1-2 \mathrm{wt}(G X))\right)\right]
$$

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

$$
\operatorname{Pr}\left[X^{\top} \cdot s=0\right]=\underset{X}{\mathbb{E}}\left[\cos ^{2}\left(\frac{\pi}{8}(1-2 \mathrm{wt}(G X))\right)\right]
$$

QR code: codewords have wt (c) $\bmod 4 \in\{0,-1\}$

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

$$
\operatorname{Pr}\left[X^{\top} \cdot s=0\right]=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85
$$

QR code: codewords have $\operatorname{wt}(c) \bmod 4 \in\{0,-1\}$

IQP: Hiding s

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot \mathbf{s}=0\right]=?$
Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=$?

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

IQP: Hiding s

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$

Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=$?

$$
\begin{aligned}
& P=\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
\vdots \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& P^{\prime} \mathbf{S}^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Scrambling preserves quantum success rate.

IQP: Hiding s

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$

Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=$?

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad P^{\text {permute rows }} \begin{aligned}
& \text { Couss } \\
& \text { Columns }
\end{aligned} \quad \quad \text { S }^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Scrambling preserves quantum success rate.
Conjecture [SB '08]: Scrambling P cryptographically hides G (and equivalently s)

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
> Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
> Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

IQP: Classical strategy

$$
\begin{gathered}
\text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
\text { Best classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{gathered}
$$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p \cdot s(\bmod 2)
$$

IQP: Classical strategy

$$
\begin{gathered}
\text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
\text { Best classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{gathered}
$$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \text { rows }(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot s=1}} 1(\bmod 2)
$$

IQP: Classical strategy

$$
\begin{gathered}
\text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
\text { Best classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{gathered}
$$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \text { rows }(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{\in rows}(P) \\ p \cdot s=1}} p \cdot d \quad(\bmod 2)
$$

IQP: Classical strategy

$$
\begin{gathered}
\text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
\text { Best classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{gathered}
$$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=w t(G d) \quad(\bmod 2)
$$

QR code codewords are 50% even parity, 50% odd parity.

IQP: Classical strategy [SB '08]

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
Classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$
Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

IQP: Classical strategy [SB '08]

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
Classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$
Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

IQP: Classical strategy [SB ’08]

$$
\begin{aligned}
& \text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
& \text { Classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{aligned}
$$

Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in r o w s(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e=1}} p \cdot s \quad(\bmod 2)
$$

IQP: Classical strategy [SB ’08]

$$
\begin{aligned}
& \text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
& \text { Classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{aligned}
$$

Consider choosing random $d, e \underset{\leftarrow}{\&}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in r o w s(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(p) \\ p \cdot s=1}}(p \cdot d)(p \cdot e) \quad(\bmod 2)
$$

IQP: Classical strategy [SB '08]

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
Classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in r o w s(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=(G d) \cdot(G e) \quad(\bmod 2)
$$

Fact: $(G d) \cdot(G e)=1$ iff $G d, G e$ both have odd parity.

IQP: Classical strategy [SB '08]

Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
Classical: $\operatorname{Pr}\left[\boldsymbol{Y}^{\top} \cdot \boldsymbol{s}=0\right]=0.75$

Consider choosing random $d, e \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in r o w s(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=(G d) \cdot(G e) \quad(\bmod 2)
$$

Fact: $(G d) \cdot(G e)=1$ iff $G d, G e$ both have odd parity.
Thus $y \cdot s=0$ with probability $3 / 4$!

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s
Consider choosing one random $d \stackrel{\S}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

$$
\text { Gd has even parity } \Rightarrow \text { all } y_{i} \cdot s=0
$$

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random $d \stackrel{\S}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

Gd has even parity \Rightarrow all $y_{i} \cdot s=0$
Let y_{i} form rows of a matrix M, such that $M s=0$

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s
Consider choosing one random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

Gd has even parity \Rightarrow all $y_{i} \cdot s=0$
Let y_{i} form rows of a matrix M, such that $M s=0$ Can solve for s! ... If M has high rank.

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

Gd has even parity \Rightarrow all $y_{i} \cdot s=0$
Let y_{i} form rows of a matrix M, such that $M s=0$ Can solve for s! ... If M has high rank. Empirically it does!

IQP: can it be fixed?

- Attack relies on properties of QR code

IQP: can it be fixed?

- Attack relies on properties of QR code
- Could pick a different G for which this attack would not succeed?

IQP: can it be fixed?

- Attack relies on properties of QR code
- Could pick a different G for which this attack would not succeed?
- Ultimately, would like to rely on standard cryptographic assumptions...

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Idea: do something really quantum: compute function in phase!

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad U|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Idea: do something really quantum: compute function in phase!
Decompose this as

$$
\mathcal{U}=\left(\mathbb{I} \otimes \mathrm{IQFT}_{N}\right) \cdot \tilde{\mathcal{U}} \cdot\left(\mathbb{I} \otimes \mathrm{QFT}_{N}\right)
$$

with

$$
\tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Quantum circuits for $x^{2} \bmod N$

$$
\text { Goal: } \quad \mathcal{U}|x\rangle|0\rangle=|x\rangle\left|x^{2} \bmod N\right\rangle
$$

Idea: do something really quantum: compute function in phase!
Decompose this as

$$
\mathcal{U}=\left(\mathbb{I} \otimes \mathrm{IQFT}_{N}\right) \cdot \tilde{\mathcal{U}} \cdot\left(\mathbb{I} \otimes \mathrm{QFT}_{N}\right)
$$

with

$$
\tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Advantages:

- Everything is diagonal (it's just a phase)!
- Modulo is automatic in the phase
- Simple decomposition into few-qubit gates

Implementation

$$
\text { New goal: } \quad \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Decompose using "grade school" integer multiplication:

$$
a \cdot b=\sum_{i, j} 2^{i+j} a_{i} b_{j}
$$

Implementation

$$
\text { New goal: } \quad \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Decompose using "grade school" integer multiplication:

$$
\begin{gathered}
a \cdot b=\sum_{i, j} 2^{i+j} a_{i} b_{j} \\
x^{2} z=\sum_{i, j, k} 2^{i+j+k} x_{i} x_{j} z_{k}
\end{gathered}
$$

Implementation

$$
\text { New goal: } \quad \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle
$$

Decompose using "grade school" integer multiplication:

$$
\begin{gathered}
a \cdot b=\sum_{i, j} 2^{i+j} a_{i} b_{j} \\
x^{2} z=\sum_{i, j, k} 2^{i+j+k} x_{i} x_{j} z_{k} \\
\exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{gathered}
$$

Implementation

$$
\begin{aligned}
& \text { New goal: } \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle \\
& \exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{aligned}
$$

- Binary multiplication is AND

Implementation

$$
\begin{aligned}
& \text { New goal: } \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle \\
& \exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{aligned}
$$

- Binary multiplication is AND
- "Apply phase whenever $x_{i}=x_{j}=z_{k}=1$ "

Implementation

$$
\begin{aligned}
& \text { New goal: } \tilde{\mathcal{U}}|x\rangle|z\rangle=\exp \left(2 \pi i \frac{x^{2}}{N} z\right)|x\rangle|z\rangle \\
& \exp \left(2 \pi i \frac{x^{2}}{N} z\right)=\prod_{i, j, k} \exp \left(2 \pi i \frac{2^{i+j+k}}{N} x_{i} x_{j} z_{k}\right)
\end{aligned}
$$

- Binary multiplication is AND
- "Apply phase whenever $x_{i}=x_{j}=z_{k}=1$ "
- These are CCPhase gates (of arb. phase)!

Leveraging the Rydberg blockade

Leveraging the Rydberg blockade

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group \mathbb{G} of order N, with generator g. Given the tuple $\left(g, g^{a}, g^{b}, g^{c}\right)$, determine if $c=a b$.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group \mathbb{G} of order N, with generator g. Given the tuple $\left(g, g^{a}, g^{b}, g^{c}\right)$, determine if $c=a b$.

Elliptic curve crypto:: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!
How to build a TCF?

Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group \mathbb{G} of order N, with generator g. Given the tuple $\left(g, g^{a}, g^{b}, g^{c}\right)$, determine if $c=a b$.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!
How to build a TCF?
Trapdoor [Peikert, Waters '08; Freeman et al. '10]: linear algebra in the exponent Claw-free [GDKM et al. '21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

Full protocol

[^0]: Michael J. Bremner, ${ }^{1, *}$ Ashley Montanaro, ${ }^{2}$ and Dan J. Shepherd ${ }^{3}$
 Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology,
 University of Technology Sydney, Sydney, NSW 2007, Australia
 ${ }^{2}$ School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
 CESG, Hubble Road, Cheltenham GL51 0EX, United Kingdom
 (Received 8 May 2015; revised manuscript received 9 June 2016; published 18 August 2016)

[^1]: (can also use other TCFs, and other optimizations...)

