

Classical verification of quantum computational advantage

Gregory D. Kahanamoku-Meyer February 22, 2022

> Theory collaborators: Norman Yao (UCB → Harvard) Umesh Vazirani (UCB) Soonwon Choi (UCB → MIT)

arXiv:2104.00687 (theory) arXiv:2112.05156 (expt.)

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow impossible to classically simulate

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow impossible to classically simulate

"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.]

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow impossible to classically simulate

"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.] Quantum is the only reasonable explanation for observed behavior

Stronger: rule out all classical hypotheses, even pathological!

Stronger: rule out all classical hypotheses, even pathological!

Local: powerfully refute the extended Church-Turing thesis

Stronger: rule out all classical hypotheses, even pathological!

Stronger: rule out all classical hypotheses, even pathological!

Proof not specific to quantum mechanics: disprove null hypothesis that output was generated classically.

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

Making number theoretic problems less costly

Fully solving a problem like factoring is "overkill"

Fully solving a problem like factoring is "overkill"

Can we demonstrate quantum *capability* without needing to solve such a hard problem?

Zero-knowledge proofs: differentiating colors

Challenge: You have a friend who is red/green colorblind. How do you convince them that a red and a green ball that appear identical are different?

Zero-knowledge proofs: differentiating colors

Challenge: You have a friend who is red/green colorblind. How do you convince them that a red and a green ball that appear identical are different? **without** actually telling them the colors?

Solution:

1. They show you one ball, then hide it behind their back

Solution:

- 1. They show you one ball, then hide it behind their back
- 2. They pull out another, you tell them same or different

Solution:

- 1. They show you one ball, then hide it behind their back
- 2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Solution:

- 1. They show you one ball, then hide it behind their back
- 2. They pull out another, you tell them same or different

This constitutes a zero-knowledge interactive proof.

Color blind friend \Leftrightarrow Classical verifier Seeing color \Leftrightarrow Quantum capability

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to a specific quantum state Round 2: Verifier asks for measurement in specific basis

Interactive proofs of quantumness

Multiple rounds of interaction between the prover and verifier

Round 1: Prover commits to a specific quantum state Round 2: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in *any* basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640). Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

How does the prover commit to a state?

Consider a **2-to-1** function f: for all y in range of f, there exist (x_0, x_1) such that $y = f(x_0) = f(x_1)$.

How does the prover commit to a state?

Consider a **2-to-1** function f: for all y in range of f, there exist (x_0, x_1) such that $y = f(x_0) = f(x_1)$.

Prover has committed to the state $(|x_0\rangle + |x_1\rangle) |y\rangle$

Prover has committed to $(|x_0\rangle + |x_1\rangle) |y\rangle$ with $y = f(x_0) = f(x_1)$

Prover has committed to $(|x_0\rangle + |x_1\rangle) |y\rangle$ with $y = f(x_0) = f(x_1)$

Source of power: cryptographic properties of 2-to-1 function f

Prover has committed to $(|x_0\rangle + |x_1\rangle) |y\rangle$ with $y = f(x_0) = f(x_1)$

Source of power: cryptographic properties of 2-to-1 function *f*

• Claw-free: It is cryptographically hard to find any pair of colliding inputs

Prover has committed to $(|x_0\rangle + |x_1\rangle) |y\rangle$ with $y = f(x_0) = f(x_1)$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs
- **Trapdoor**: With the secret key, easy to classically compute the two inputs mapping to any output

Prover has committed to $(|x_0\rangle + |x_1\rangle) |y\rangle$ with $y = f(x_0) = f(x_1)$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs
- **Trapdoor**: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

Prover has committed to $(|x_0\rangle + |x_1\rangle) |y\rangle$ with $y = f(x_0) = f(x_1)$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs
- **Trapdoor**: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

The only path to a valid state without trapdoor is by superposition + wavefunction collapse—inherently quantum!

Subtlety: claw-free does *not* imply hardness of generating measurement outcomes!

arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082

Subtlety: claw-free does *not* imply hardness of generating measurement outcomes! Learning-with-Errors TCF has adaptive hardcore bit

arXiv:1804.00640. Can be extended to verify arbitrary quantum computations! arXiv:1804.01082

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	✓	✓	\checkmark
Ring-LWE [2]	✓	✓	×
$x^2 \mod N$ [3]	✓	✓	X
Diffie-Hellman [3]	✓	✓	X

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)
Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	✓	✓	\checkmark
Ring-LWE [2]	1	✓	×
$x^2 \mod N$ [3]	1	✓	×
Diffie-Hellman [3]	1	1	×

BKVV '20 removes need for AHCB in random oracle model. [2]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	✓	✓	\checkmark
Ring-LWE [2]	✓	✓	×
$x^2 \mod N$ [3]	✓	✓	X
Diffie-Hellman [3]	1	✓	×

BKVV '20 removes need for AHCB in random oracle model. [2]

Can we do the same in standard model?

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	✓	✓	\checkmark
Ring-LWE [2]	✓	✓	×
$x^2 \mod N$ [3]	✓	✓	X
Diffie-Hellman [3]	1	✓	×

BKVV '20 removes need for AHCB in random oracle model. [2]

Can we do the same in standard model? Yes! [3]

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18

Replace X basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Replace X basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $x_0 \cdot r = x_1 \cdot r$, otherwise $|+\rangle$ or $|-\rangle$.

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Replace X basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $x_0 \cdot r = x_1 \cdot r$, otherwise $|+\rangle$ or $|-\rangle$. Polarization hidden via:

Cryptographic secret (here) ↔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Replace X basis measurement with two-step process: "condense" *x*₀, *x*₁ into a single qubit, and then do a "Bell test."

Replace X basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Now can use any trapdoor claw-free function!

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

p_Z: Success rate for *Z* basis measurement.

 p_{CHSH} : Success rate when performing CHSH-type measurement.

p_Z: Success rate for *Z* basis measurement.

 p_{CHSH} : Success rate when performing CHSH-type measurement.

Under assumption of claw-free function:

Classical bound: $p_Z + 4p_{CHSH} - 4 < negl(n)$

p_Z: Success rate for *Z* basis measurement.

*p*_{CHSH}: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_Z + 4p_{CHSH} - 4 < \text{negl}(n)$ Ideal quantum: $p_Z = 1$, $p_{CHSH} = \cos^2(\pi/8)$

p_Z: Success rate for *Z* basis measurement.

*p*_{CHSH}: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_Z + 4p_{CHSH} - 4 < negl(n)$ Ideal quantum: $p_Z = 1$, $p_{CHSH} = cos^2(\pi/8)$ $p_Z + 4p_{CHSH} - 4 = \sqrt{2} - 1 \approx 0.414$

p_Z: Success rate for *Z* basis measurement.

*p*_{CHSH}: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_Z + 4p_{CHSH} - 4 < \text{negl}(n)$ Ideal quantum: $p_Z = 1$, $p_{CHSH} = \cos^2(\pi/8)$ $p_Z + 4p_{CHSH} - 4 = \sqrt{2} - 1 \approx 0.414$

Note: Let $p_Z = 1$. Then for p_{CHSH} : Classical bound 75%, ideal quantum ~ 85%. Same as regular CHSH!

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interaction

• Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Fidelity (without error correction)

 \cdot Need to pass classical threshold

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Fidelity (without error correction)

- \cdot Need to pass classical threshold
- Postselection scheme drastically improves required fidelity

Circuit sizes

• Removing need for adaptive hardcore bit allows "easier" TCFs

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Fidelity (without error correction)

- \cdot Need to pass classical threshold
- Postselection scheme drastically improves required fidelity

Circuit sizes

- Removing need for adaptive hardcore bit allows "easier" TCFs
- Measurement-based uncomputation scheme

Interaction

- Intermediate measurement: need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!

Fidelity (without error correction)

- \cdot Need to pass classical threshold
- Postselection scheme drastically improves required fidelity

Circuit sizes

- Removing need for adaptive hardcore bit allows "easier" TCFs
- Measurement-based uncomputation scheme
- ... hopefully can continue making theory improvements!

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Dr. Daiwei Zhu

Prof. Crystal Noel

and others!

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

TTTTTT

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

TEFFFE

exercise .

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

TEFFFE

exercise .

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

TTTTTT

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland (ightarrow Duke)

First demonstration of protocols, in trapped ions! (arXiv:2112.05156)

Partial measurement:
Interactive proofs on a few qubits

GDKM, D. Zhu, et al. (arXiv:2112.05156)

How to deal with high fidelity requirement? Naively need $\sim 83\%$ overall circuit fidelity to pass.

- How to deal with high fidelity requirement? Naively need $\sim 83\%$ overall circuit fidelity to pass.
- A prover holding $(|x_0\rangle + |x_1\rangle) |y\rangle$ with ϵ phase coherence passes!

How to deal with high fidelity requirement? Naively need $\sim 83\%$ overall circuit fidelity to pass.

A prover holding $(|x_0\rangle + |x_1\rangle) |y\rangle$ with ϵ phase coherence passes! When we generate $\sum_{x} |x\rangle |f(x)\rangle$, add redundancy to f(x), for bit flip error detection!

Technique: postselection

How to deal with high fidelity requirement? Naively need $\sim 83\%$ overall circuit fidelity to pass.

Numerical results for $x^2 \mod N$ with $\log N = 512$ bits. Here: make transformation $x^2 \mod N \Rightarrow (kx)^2 \mod k^2N$

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

Getting rid of adaptive hardcore bit helps!

 $x^2 \mod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n)$...

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

Getting rid of adaptive hardcore bit helps! $x^2 \mod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n)$... but they are recursive and hard to make reversible.

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

Getting rid of adaptive hardcore bit helps! $x^2 \mod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n)$... but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

 $|a\rangle \longrightarrow |a\rangle$ $|b\rangle \longrightarrow |b\rangle$ $|0\rangle \longrightarrow |a \land b\rangle$

Classical AND

Quantum AND (Toffoli)

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Lots of time and space overhead!

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Can we "measure them away" instead?

Measure garbage bits $g_f(x)$ in X basis, get some string *h*. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

Measure garbage bits $g_f(x)$ in X basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

Measure garbage bits $g_f(x)$ in X basis, get some string h. End up with state:

$$\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $[(-1)^{h \cdot g_f(x_0)} |x_0\rangle + (-1)^{h \cdot g_f(x_1)} |x_1\rangle] |y\rangle$

Measure garbage bits $g_f(x)$ in X basis, get some string h. End up with state:

$$\sum_{x} (-1)^{h \cdot g_{f}(x)} |x\rangle |f(x)\rangle$$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$

Verifier can efficiently compute $g_f(\cdot)$ for these two terms!

Measure garbage bits $g_f(x)$ in X basis, get some string h. End up with state:

$$\sum_{x} (-1)^{h \cdot g_{f}(x)} |x\rangle |f(x)\rangle$$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

$$\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle\right] | y \rangle$$

Verifier can efficiently compute $g_f(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum!

Measure garbage bits $g_f(x)$ in X basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$

Verifier can efficiently compute $g_f(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum! 1024-bit $x^2 \mod N$ in depth 10⁵ (and can be improved?)

Goal: $\mathcal{U} \ket{x} \ket{0} = \ket{x} \ket{x^2 \mod N}$

Goal:
$$\mathcal{U} |x\rangle |0\rangle = |x\rangle |x^2 \mod N\rangle$$

Idea: do something really quantum: compute function in phase!

Goal:
$$\mathcal{U} \ket{x} \ket{0} = \ket{x} \ket{x^2 \mod N}$$

Idea: do something really quantum: compute function in phase! Decompose this as

$$\mathcal{U} = (\mathbb{I} \otimes \mathrm{IQFT}_{\mathcal{N}}) \cdot ilde{\mathcal{U}} \cdot (\mathbb{I} \otimes \mathrm{QFT}_{\mathcal{N}})$$

with

$$\tilde{\mathcal{U}}\left|x\right\rangle\left|z\right\rangle = \exp\left(2\pi i \frac{x^{2}}{N} z\right)\left|x\right\rangle\left|z\right\rangle$$

Goal:
$$\mathcal{U} \ket{x} \ket{0} = \ket{x} \ket{x^2 \mod N}$$

Idea: do something really quantum: compute function in phase! Decompose this as

$$\mathcal{U} = (\mathbb{I} \otimes \mathrm{IQFT}_{\mathcal{N}}) \cdot ilde{\mathcal{U}} \cdot (\mathbb{I} \otimes \mathrm{QFT}_{\mathcal{N}})$$

with

$$\tilde{\mathcal{U}}\left|x\right\rangle\left|z\right\rangle = \exp\left(2\pi i \frac{x^{2}}{N} z\right)\left|x\right\rangle\left|z\right\rangle$$

Advantages:

- Everything is diagonal (it's just a phase)!
- Modulo is automatic in the phase
- Simple decomposition into few-qubit gates

New goal:
$$ilde{\mathcal{U}} \ket{z} = \exp\left(2\pi i \frac{x^2}{N} z\right) \ket{z}$$

Decompose using "grade school" integer multiplication:

$$a \cdot b = \sum_{i,i} 2^{i+j} a_i b_j$$

New goal:
$$ilde{\mathcal{U}} \ket{x} \ket{z} = \exp\left(2\pi i rac{x^2}{N} z
ight) \ket{x} \ket{z}$$

Decompose using "grade school" integer multiplication:

$$a \cdot b = \sum_{i,j} 2^{i+j} a_i b_j$$

$$x^2 z = \sum_{i,j,k} 2^{i+j+k} x_i x_j z_k$$

New goal:
$$ilde{\mathcal{U}} \ket{x} \ket{z} = \exp\left(2\pi i rac{x^2}{N} z
ight) \ket{x} \ket{z}$$

Decompose using "grade school" integer multiplication:

$$a \cdot b = \sum_{i,j} 2^{i+j} a_i b_j$$

$$x^2 z = \sum_{i,j,k} 2^{i+j+k} x_i x_j z_k$$

$$\exp\left(2\pi i \frac{x^2}{N} z\right) = \prod_{i,j,k} \exp\left(2\pi i \frac{2^{i+j+k}}{N} x_i x_j z_k\right)$$

New goal:
$$\tilde{\mathcal{U}} \ket{x} \ket{z} = \exp\left(2\pi i \frac{x^2}{N} z\right) \ket{x} \ket{z}$$

$$\exp\left(2\pi i \frac{x^2}{N} z\right) = \prod_{i,j,k} \exp\left(2\pi i \frac{2^{i+j+k}}{N} x_i x_j z_k\right)$$

• Binary multiplication is AND

New goal:
$$\tilde{\mathcal{U}} \ket{x} \ket{z} = \exp\left(2\pi i \frac{x^2}{N} z\right) \ket{x} \ket{z}$$

$$\exp\left(2\pi i \frac{x^2}{N} z\right) = \prod_{i,j,k} \exp\left(2\pi i \frac{2^{i+j+k}}{N} x_i x_j z_k\right)$$

- Binary multiplication is AND
- "Apply phase whenever $x_i = x_j = z_k = 1$ "

New goal:
$$\tilde{\mathcal{U}} \ket{x} \ket{z} = \exp\left(2\pi i \frac{x^2}{N} z\right) \ket{x} \ket{z}$$

$$\exp\left(2\pi i \frac{x^2}{N} z\right) = \prod_{i,j,k} \exp\left(2\pi i \frac{2^{i+j+k}}{N} x_i x_j z_k\right)$$

- Binary multiplication is AND
- "Apply phase whenever $x_i = x_j = z_k = 1$ "
- These are CCPhase gates (of arb. phase)!

Leveraging the Rydberg blockade

Leveraging the Rydberg blockade

"In the box" ideas (not necessarily bad):

• Find more efficient TCFs

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

"Box-adjacent" ideas:

• Explore other protocols (fix IQP and make it fast?)

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Symmetric key/hash-based cryptography?

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Symmetric key/hash-based cryptography?

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Symmetric key/hash-based cryptography?

Way outside the box?

Backup!

NISQ verifiable quantum advantage

NISQ: Noisy Intermediate-Scale Quantum devices

Generically: seems hard.

The point of random circuits is that they don't have structure!

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

 $H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$ (1)

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure opens opportunities for classical cheating

Problem (not TCF): Consider a group \mathbb{G} of order *N*, with generator *g*. Given the tuple (g, g^a, g^b, g^c) , determine if c = ab.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!

Problem (not TCF): Consider a group \mathbb{G} of order *N*, with generator *g*. Given the tuple (g, g^a, g^b, g^c) , determine if c = ab.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!! How to build a TCF? **Problem (not TCF):** Consider a group \mathbb{G} of order *N*, with generator *g*. Given the tuple (g, g^a, g^b, g^c) , determine if c = ab.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters '08; Freeman et al. '10]: linear algebra in the exponent

Claw-free [GDKM et al. '21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

Full protocol

