

Classical verification of quantum computational advantage

Gregory D. Kahanamoku-Meyer February 9, 2022
arXiv:2104.00687 (theory)
arXiv:2112.05156 (expt.)

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow impossible to classically simulate

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow impossible to classically simulate
"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.]

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow impossible to classically simulate
"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.]
Quantum is the only reasonable explanation for observed behavior

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!

Stronger: rule out all classical hypotheses, even pathological! Explicitly perform a "proof of quantumness"

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!
Explicitly perform a "proof of quantumness"

Local: rigorously refute extended Church-Turing thesis

"Black-box" quantum computational advantage

Stronger: rule out all classical hypotheses, even pathological!
Explicitly perform a "proof of quantumness"

Local: rigorously refute extended Church-Turing thesis

10100111100
11010110011
$11101100 ~ \checkmark$
10011000 (

Remote: validate an untrusted quantum cloud service

Interactive proofs

Multiple rounds of interaction between the prover and verifier

Interactive proofs

Multiple rounds of interaction between the prover and verifier

Prover must commit data before learning the challenge

Interactive proofs

Multiple rounds of interaction between the prover and verifier

Prover must commit data before learning the challenge
Via repetition can establish that prover can respond correctly to any challenge.

Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state
Round 2: Verifier asks for measurement in specific basis

Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state
Round 2: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640).
Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f :
for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 function f: for all y in range of f, there exist $\left(x_{0}, x_{1}\right)$ such that $y=f\left(x_{0}\right)=f\left(x_{1}\right)$.

Evaluate f on uniform
superposition

$$
\sum_{x}|x\rangle|f(x)\rangle
$$

Measure $2^{\text {nd }}$ register as y

10100111100
11010110011
11101100100
10011000011
$\square \square$

State commitment (round 1): trapdoor claw-free functions

Prover has committed to $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with $y=f\left(x_{0}\right)=f\left(x_{1}\right)$

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

State commitment (round 1): trapdoor claw-free functions

$$
\text { Prover has committed to }\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle \text { with } y=f\left(x_{0}\right)=f\left(x_{1}\right)
$$

Source of power: cryptographic properties of 2-to-1 function f

- Claw-free: It is cryptographically hard to find any pair of colliding inputs
- Trapdoor: With the secret key, easy to classically compute the two inputs mapping to any output

Cheating classical prover can't forge the state; classical verifier can determine state using trapdoor.

The only path to a valid state without trapdoor is by superposition + wavefunction collapse-inherently quantum!

[BCMVV '18] protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Verifier

10100111100
11010110011
11101100100
10011000011

Pick trapdoor claw-free function f
$y \longrightarrow$ Compute x_{0}, x_{1} from y using trapdoor

[BCMVV '18] protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Verifier

10100111100
11010110011
11101100100
10011000011

Pick trapdoor claw-free function f
$y \longrightarrow$ Compute x_{0}, x_{1} from y using trapdoor

Pick Z or X basis
result
\longrightarrow Validate result against x_{0}, x_{1}

[BCMVV '18] protocol

basis

Measure qubits of
$\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Verifier

10100111100
11010110011
11101100100
10011000011

$$
\begin{gathered}
\stackrel{f}{y} \quad \begin{array}{c}
\text { Pick trapdoor claw-free } \\
\text { function } f
\end{array} \\
y \quad \text { Compute } x_{0}, x_{1} \text { from } y \text { using } \\
\text { trapdoor }
\end{gathered}
$$

Pick Z or X basis

Perform experiment many times, let p_{Z}, p_{x} be success rate in respective basis.

[BCMVV '18] protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Verifier

10100111100
11010110011
11101100100
10011000011

Pick trapdoor claw-free

Pick Z or X basis

function f
 $y \longrightarrow$ Compute x_{0}, x_{1} from y using trapdoor

$\xrightarrow{\text { result }}$ Validate result against x_{0}, x_{1}

[BCMVV '18] protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Verifier

10100111100
11010110011
11101100100
10011000011

Pick trapdoor claw-free function f
$y \longrightarrow$ Compute x_{0}, x_{1} from y using trapdoor

Pick Z or X basis

Subtlety: claw-free alone does not imply classical bound! Learning-with-Errors TCF has adaptive hardcore bit

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
Ring-LWE [2]	\checkmark	\checkmark	x
$X^{2} \bmod N[3]$	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	X

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
Ring-LWE [2]	\checkmark	\checkmark	x
$X^{2} \bmod N[3]$	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

BKWV '20 removes need for AHCB in random oracle model. [2]
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
Ring-LWE [2]	\checkmark	\checkmark	x
$X^{2} \bmod N[3]$	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	X

BKWV '20 removes need for AHCB in random oracle model. [2]

Can we do the same in standard model?
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
Ring-LWE [2]	\checkmark	\checkmark	x
$X^{2} \bmod N[3]$	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	X

BKWV '20 removes need for AHCB in random oracle model. [2]

Can we do the same in standard model? Yes! [3]
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interactive measurement: computational Bell test

Verifier

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y

Measure qubits of
$\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Pick trapdoor claw-free function f
y Compute x_{0}, x_{1} from y using trapdoor
Pick Z or X basis
basis
\qquad
\qquad
result
\rightarrow Validate result against x_{0}, x_{1}

Interactive measurement: computational Bell test

Prover

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$
Measure $2^{\text {nd }}$ register as y

Measure qubits of
$\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Verifier

10100111100
11010110011
11101100100
10011000011

Pick trapdoor claw-free function f
y Compute x_{0}, x_{1} from y using trapdoor
Pick Z or X basis
result

Validate result against x_{0}, x_{1}

Replace X basis measurement with "1-player CHSH game."

Interactive measurement: computational Bell test

Replace X basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Pick random bitstring r

Interactive measurement: computational Bell test

Replace X basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X

Pick random bitstring r basis

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r=x_{1} \cdot r$, otherwise $|+\rangle$ or $|-\rangle$.

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interactive measurement: computational Bell test

Replace X basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

10100111100
 11010110011
 11101100100
 10011000011

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X

Pick random bitstring r basis

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r=x_{1} \cdot r$, otherwise $|+\rangle$ or $|-\rangle$. Polarization hidden via:

Cryptographic secret (here) \Leftrightarrow Non-communication (Bell test)
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interactive measurement: computational Bell test

Replace X basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

Measure all but ancilla in X basis

Measure qubit in basis

Pick random bitstring r

basis
Pick $(Z+X)$ or $(Z-X)$ basis Validate against r, x_{0}, x_{1}, d

Interactive measurement: computational Bell test

Replace X basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in X basis

Measure qubit in basis

Pick random bitstring r

Pick $(Z+X)$ or $(Z-X)$ basis Validate against r, x_{0}, x_{1}, d

Now can use any trapdoor claw-free function!

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {CHSH: }}$ Success rate when performing CHSH-type measurement.

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {CHSH: }}$ Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_{Z}+4 p_{\text {CHSH }}-4<\epsilon$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {CHSH: }}$: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

> Classical bound: $p_{Z}+4 p_{\mathrm{CHSH}}-4<\epsilon$
> Ideal quantum: $p_{Z}=1, p_{\mathrm{CHSH}}=\cos ^{2}(\pi / 8)$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {CHSH: }}$: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

$$
\begin{gathered}
\text { Classical bound: } p_{Z}+4 p_{\mathrm{CHSH}}-4<\epsilon \\
\text { Ideal quantum: } p_{Z}=1, p_{\mathrm{CHSH}}=\cos ^{2}(\pi / 8) \\
p_{Z}+4 p_{\mathrm{CHSH}}-4=\sqrt{2}-1 \approx 0.414
\end{gathered}
$$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{Z} : Success rate for Z basis measurement.
$p_{\text {CHSH: }}$ Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

$$
\begin{aligned}
& \text { Classical bound: } p_{Z}+4 p_{\mathrm{CHSH}}-4<\epsilon \\
& \text { Ideal quantum: } p_{Z}=1, p_{\mathrm{CHSH}}=\cos ^{2}(\pi / 8) \\
& p_{Z}+4 p_{\mathrm{CHSH}}-4=\sqrt{2}-1 \approx 0.414
\end{aligned}
$$

Note: Let $p_{z}=1$. Then for $p_{\text {CHSH: }}$:
Classical bound 75%, ideal quantum $\sim 85 \%$. Same as regular CHSH!
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Moving towards full efficiently-verifiable quantum adv. on NISQ

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Fidelity (without error correction)

- Need to pass classical threshold

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity [arXiv:2104.00687]

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity [arXiv:2104.00687]

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity [arXiv:2104.00687]

Circuit sizes

- Removing need for adaptive hardcore bit allows "easier" TCFs

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity [arXiv:2104.00687]

Circuit sizes

- Removing need for adaptive hardcore bit allows "easier" TCFs
- Measurement-based uncomputation scheme [arXiv:2104.00687]

Moving towards full efficiently-verifiable quantum adv. on NISQ

Interaction

- Need to measure subsystem while maintaining coherence on other qubits
- Implemented by the experiments!!

Fidelity (without error correction)

- Need to pass classical threshold
- Postselection scheme drastically improves required fidelity [arXiv:2104.00687]

Circuit sizes

- Removing need for adaptive hardcore bit allows "easier" TCFs
- Measurement-based uncomputation scheme [arXiv:2104.00687]
- ... hopefully can continue making theory improvements!

Backup

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm ... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

