

Classical verification of quantum computational advantage

Gregory D. Kahanamoku-Meyer November 10, 2021

Theory collaborators:
Norman Yao (Berkeley Physics) Umesh Vazirani (Berkeley CS) Soonwon Choi (MIT Physics)
arXiv:1912.05547 arXiv:2104.00687

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow "impossible" to classically simulate

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow "impossible" to classically simulate
"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.]

Quantum computational advantage

Recent experimental demonstrations:

Random circuit sampling [Arute et al., Nature '19]

Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments \rightarrow "impossible" to classically simulate
"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.]

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.),

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.), single black-box prover,

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.), single black-box prover, superpolynomial computational separation

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

Local: powerfully refute the extended Church-Turing thesis

"Black-box" proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

Local: powerfully refute the extended Church-Turing thesis

10100111100
11010110011
$11101100 \bigcirc$
10011000

Remote: validate an untrusted quantum cloud service

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

NISQ verifiable quantum advantage

Trivial solution: Shor's algorithm... but we want to do near-term!

Sampling problems

e.g. random circuits, Boson sampling, ...
\checkmark NISQ feasible
x Efficiently verifiable

Number theory problems
e.g. factoring, discrete logarithm, ...
x NISQ feasible
\checkmark Efficiently verifiable
\checkmark NISQ feasible
\checkmark Efficiently verifiable

Adding structure to sampling problems

Idea: some property of samples that we can check?

Adding structure to sampling problems

Idea: some property of samples that we can check?
Generically: seems difficult to make work.

The point of random circuits is that they don't have structure!

Adding structure to sampling problems

Idea: some property of samples that we can check?
Generically: seems difficult to make work.

The point of random circuits is that they don't have structure!

IQP circuits [Shepherd and Bremner, '08]:

- Hide a secret string s in the quantum circuit
- Set up circuit so it is biased to generate samples x with $x^{\top} \cdot s=0$.

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

Let $H=\sum_{i} \prod_{j} X_{j}^{P_{j j}}$.
Example:

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

Let $H=\sum_{i} \prod_{j} X_{j}^{P_{j j}}$.
Example:

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

Distribution of sampling result X :

$$
\begin{equation*}
\left.\operatorname{Pr}[X=x]=\left|\langle x| e^{-i H \theta}\right| 0\right\rangle\left.\right|^{2} \tag{2}
\end{equation*}
$$

IQP circuits [Shepherd and Bremner, '08]

Consider a matrix $P \in\{0,1\}^{k \times n}$ and "action" θ.

Let $H=\sum_{i} \Pi_{j} X_{j}^{P_{j i}}$.
Example:

$$
\begin{equation*}
H=X_{0} X_{1} X_{3}+X_{1} X_{2} X_{4} X_{5}+\cdots \tag{1}
\end{equation*}
$$

Distribution of sampling result X :

$$
\begin{equation*}
\left.\operatorname{Pr}[X=x]=\left|\langle x| e^{-i H \theta}\right| 0\right\rangle\left.\right|^{2} \tag{2}
\end{equation*}
$$

Bremner, Jozsa, Shepherd '11: classically sampling worst-case IQP circuits would collapse polynomial heirarchy

Bremner, Montanaro, Shepherd '16: average case is likely hard as well

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{R}
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

$$
\operatorname{Pr}\left[X^{\top} \cdot S=0\right]=\underset{X}{\mathbb{E}}\left[\cos ^{2}\left(\frac{\pi}{8}(1-2 w t(G X))\right)\right]
$$

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

G^{\top} is generator of Quadratic Residue code, R random.

$$
\operatorname{Pr}\left[X^{\top} \cdot S=0\right]=\underset{X}{\mathbb{E}}\left[\cos ^{2}\left(\frac{\pi}{8}(1-2 \omega t(G X))\right)\right]
$$

QR code: codewords have wt (c) $\bmod 4 \in\{0,-1\}$

IQP proof of quantumness [Shepherd and Bremner, '08]

Let $\theta=\pi / 8$, and s (secret) and P have the form:

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{l}
1 \\
1 \\
1 \\
\vdots \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$G T$ is generator of Quadratic Residue code, R random.

$$
\operatorname{Pr}\left[X^{\top} \cdot s=0\right]=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85
$$

QR code: codewords have $w t(c) \bmod 4 \in\{0,-1\}$

IQP: Hiding s

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=$?

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{r}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

IQP: Hiding s

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot S=0\right] \approx 0.85$
> Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=?$

Scrambling preserves quantum success rate.

IQP: Hiding s

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot S=0\right] \approx 0.85$
> Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=?$

$$
P=\left[\begin{array}{l}
\mathrm{G} \\
\\
\hline \mathrm{R}
\end{array}\right] \quad P S=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad \begin{aligned}
& \text { permute rows, } \\
& \text { Gauss-lordan } \\
& \text { colunns }
\end{aligned} \quad \quad P^{\prime} S^{\prime}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Scrambling preserves quantum success rate.
Conjecture [SB '08]: Scrambling P cryptographically hides G (and equivalently s)

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p \cdot s \quad(\bmod 2)
$$

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot s=1}} 1(\bmod 2)
$$

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rrows}(P) \\ p \cdot s=1}} p \cdot d(\bmod 2)
$$

IQP: Classical strategy

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$ Best classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Assuming s hidden, can classical do better than 0.5? Try to take advantage properties of embedded code.
Consider choosing random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=1}} p
$$

Then:

$$
y \cdot s=w t(G d) \quad(\bmod 2)
$$

QR code codewords are 50\% even parity, 50\% odd parity.

IQP: Classical strategy [SB ’08]

$$
\begin{aligned}
& \text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
& \text { Classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{aligned}
$$

Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

IQP: Classical strategy [SB ’08]

$$
\begin{aligned}
& \text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
& \text { Classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{aligned}
$$

Consider choosing random $d, e \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rrows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

IQP: Classical strategy [SB ’08]

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
> Classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rrows}(P) \\ p \cdot d=p \cdot e=1}} p \cdot s(\bmod 2)
$$

IQP: Classical strategy [SB ’08]

> Quantum: $\operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85$
> Classical: $\operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5$

Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rrows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=\sum_{\substack{p \in \operatorname{rows}(p) \\ p \cdot s=1}}(p \cdot d)(p \cdot e) \quad(\bmod 2)
$$

IQP: Classical strategy [SB '08]

$$
\begin{aligned}
& \text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
& \text { Classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right] \stackrel{?}{=} 0.5
\end{aligned}
$$

Consider choosing random $d, e \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \in \operatorname{rrows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=(G d) \cdot(G e) \quad(\bmod 2)
$$

Fact: $(G d) \cdot(G e)=1$ iff $G d, G e$ both have odd parity.

IQP: Classical strategy [SB '08]

$$
\begin{aligned}
& \text { Quantum: } \operatorname{Pr}\left[X^{\top} \cdot s=0\right] \approx 0.85 \\
& \text { Classical: } \operatorname{Pr}\left[Y^{\top} \cdot s=0\right]=0.75
\end{aligned}
$$

Consider choosing random $d, e \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and letting

$$
y=\sum_{\substack{p \operatorname{rows}(P) \\ p \cdot d=p \cdot e=1}} p
$$

Then:

$$
y \cdot s=(G d) \cdot(G e) \quad(\bmod 2)
$$

Fact: $(G d) \cdot(G e)=1$ iff $G d, G e$ both have odd parity.
Thus $y \cdot s=0$ with probability $3 / 4$!

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s
Consider choosing one random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random $d \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

$$
\text { Gd has even parity } \Rightarrow \text { all } y_{i} \cdot s=0
$$

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s
Consider choosing one random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

Gd has even parity \Rightarrow all $y_{i} \cdot s=0$
Let y_{i} form rows of a matrix M, such that $M s=0$

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s
Consider choosing one random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\mathbb{S}}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

Gd has even parity \Rightarrow all $y_{i} \cdot s=0$
Let y_{i} form rows of a matrix M, such that $M s=0$
Can solve for s! ... If M has high rank.

IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s
Consider choosing one random $d \stackrel{\&}{\leftarrow}\{0,1\}^{n}$, held constant over many different $\boldsymbol{e}_{i} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$

$$
y_{i}=\sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d=p \cdot e_{i}=1}} p
$$

$y_{i} \cdot s=1$ iff $G d, G e_{i}$ both have odd parity.

Gd has even parity \Rightarrow all $y_{i} \cdot s=0$
Let y_{i} form rows of a matrix M, such that $M s=0$
Can solve for s !... If M has high rank. Empirically it does!

IQP: can it be fixed?

- Attack relies on properties of QR code

IQP: can it be fixed?

- Attack relies on properties of QR code
- Could pick a different G for which this attack would not succeed?

IQP: can it be fixed?

- Attack relies on properties of QR code
- Could pick a different G for which this attack would not succeed?
- Ultimately, would like to rely on standard cryptographic assumptions...

NISQ verifiable quantum advantage

Sampling problems

e.g. random circuits, Boson sampling, ...
\checkmark NISQ feasible
x Efficiently verifiable

Number theory problems
e.g. factoring, discrete logarithm, ...
x NISQ feasible
\checkmark Efficiently verifiable

\[

\]

Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state
Round 2+: Verifier asks for measurement in specific basis

Interactive proofs of quantumness

Verifier

Round 1: Prover commits to a specific quantum state
Round 2+: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640).
Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 collision-resistant (claw-free) function f.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 collision-resistant (claw-free) function f.

Evaluate f on uniform superposition

$$
\sum_{x}|x\rangle|f(x)\rangle
$$

Measure $2^{\text {nd }}$ register as y

10100111100
11010110011
11101100100
10011000011

Pick 2-to-1 function f

Store y as commitment

Prover has committed to the state $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$

LWE protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Verifier

10100111100
11010110011
11101100100
10011000011

Pick trapdoor claw-free function f
$y \longrightarrow$ Compute x_{0}, x_{1} from y using
trapdoor

LWE protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

LWE protocol

Subtlety: claw-free does not imply hardness of generating measurement outcomes!

LWE protocol

Subtlety: claw-free does not imply hardness of generating measurement outcomes!
 Learning-with-Errors TCF has adaptive hardcore bit

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
$x^{2} \bmod N[3]$	\checkmark	\checkmark	x
Ring-LWE [2]	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
$x^{2} \bmod N[3]$	\checkmark	\checkmark	x
Ring-LWE [2]	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

BKVV '20 [2]: Non-interactive protocol without adaptive hardcore bit, in random oracle model
[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	\checkmark	\checkmark	\checkmark
$x^{2} \bmod N[3]$	\checkmark	\checkmark	x
Ring-LWE [2]	\checkmark	\checkmark	x
Diffie-Hellman [3]	\checkmark	\checkmark	x

BKV '20 [2]: Non-interactive protocol without adaptive hardcore bit, in random oracle model

Can we remove AHCB in the standard model of cryptography?
[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

LWE protocol

Evaluate f on uniform superposition: $\sum_{x}|x\rangle|f(x)\rangle$ Measure $2^{\text {nd }}$ register as y

Measure qubits of $\left|x_{0}\right\rangle+\left|x_{1}\right\rangle$ in given basis

Verifier

10100111100
11010110011
11101100100
10011000011

Replace Hadamard basis measurement with "1-player CHSH"

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

Interactive measurement: computational Bell test

Replace Hadamard basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in Hadamard basis

10100111100
11010110011
11101100100
10011000011

Pick random bitstring r

Interactive measurement: computational Bell test

Replace Hadamard basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

10100111100
 11010110011
 11101100100
 10011000011

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in Hadamard basis

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $x_{0} \cdot r=x_{1} \cdot r$, otherwise $|+\rangle$ or $|-\rangle$.

Interactive measurement: computational Bell test

Replace Hadamard basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

10100111100
 11010110011
 11101100100
 10011000011

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in

Pick random bitstring r Hadamard basis Polarization hidden via:

Cryptographic secret (here) \Leftrightarrow Non-communication (Bell test)
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Interactive measurement: computational Bell test

Replace Hadamard basis measurement with two-step process: "condense" x_{0}, x_{1} into a single qubit, and then do a "Bell test."

$\left|x_{0}\right\rangle\left|x_{0} \cdot r\right\rangle+\left|x_{1}\right\rangle\left|x_{1} \cdot r\right\rangle$
Measure all but ancilla in Hadamard basis

Measure qubit in basis

10100111100
11010110011
11101100100
10011000011

Pick random bitstring r

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{s} : Success rate for standard basis measurement.
$p_{\text {CHSH: }}$ Success rate when performing CHSH-type measurement.

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{s} : Success rate for standard basis measurement.
$p_{\text {CHSH: }}$ Success rate when performing CHSH-type measurement. Under assumption of claw-free function:

Classical bound: $p_{s}+4 p_{\text {CHSH }}-4<\operatorname{negl}(n)$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{s} : Success rate for standard basis measurement.
$p_{\text {CHSH: }}$: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_{s}+4 p_{\text {CHSH }}-4<\operatorname{negl}(n)$
Ideal quantum: $p_{s}=1, p_{\text {CHSH }}=\cos ^{2}(\pi / 8)$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{s} : Success rate for standard basis measurement.
$p_{\text {CHSH: }}$: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_{s}+4 p_{\text {CHSH }}-4<\operatorname{negl}(n)$ Ideal quantum: $p_{S}=1, p_{\mathrm{CHSH}}=\cos ^{2}(\pi / 8)$ $p_{S}+4 p_{\text {CHSH }}-4=\sqrt{2}-1 \approx 0.414$

Computational Bell test: classical bound

Run protocol many times, collect statistics.
p_{s} : Success rate for standard basis measurement.
$p_{\text {CHSH: }}$: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

> Classical bound: $p_{S}+4 p_{\text {CHSH }}-4<\operatorname{negl}(n)$ Ideal quantum: $p_{S}=1, p_{\text {CHSH }}=\cos ^{2}(\pi / 8)$ $p_{S}+4 p_{\text {CHSH }}-4=\sqrt{2}-1 \approx 0.414$

Note: Let $p_{s}=1$. Then for $p_{\text {CHSH }}$:
Classical bound 75%, ideal quantum $\sim 85 \%$. Same as regular CHSH!
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Challenges for implementation

- Partial measurement

Challenges for implementation

- Partial measurement
- Required for multi-round classical interaction

Challenges for implementation

- Partial measurement
- Required for multi-round classical interaction
- Fidelity requirement

Challenges for implementation

- Partial measurement
- Required for multi-round classical interaction
- Fidelity requirement
- High fidelity needed to pass classical bound

Challenges for implementation

- Partial measurement
- Required for multi-round classical interaction
- Fidelity requirement
- High fidelity needed to pass classical bound
- Circuit sizes

Challenges for implementation

- Partial measurement
- Required for multi-round classical interaction
- Fidelity requirement
- High fidelity needed to pass classical bound
- Circuit sizes
- Need to implement public-key crypto. on a superposition

Partial measurements in the lab

TIQI
 A8.

Trapped Ion Quantum Information lab at U. Maryland
Working on demonstration of protocols in trapped ions!

and others!

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland
Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland
Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Technique: postselection

How to deal with high fidelity requirement? Need $\sim 83 \%$ fidelity in general to pass.

Technique: postselection

How to deal with high fidelity requirement? Need $\sim 83 \%$ fidelity in general to pass.

Can show: a prover holding $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with ϵ phase coherence passes!

Technique: postselection

How to deal with high fidelity requirement? Need $\sim 83 \%$ fidelity in general to pass.

Can show: a prover holding $\left(\left|x_{0}\right\rangle+\left|x_{1}\right\rangle\right)|y\rangle$ with ϵ phase coherence passes!
When we generate $\sum_{x}|x\rangle|f(x)\rangle$, add redundancy to $f(x)$, for bit flip error detection!

Technique: postselection

How to deal with high fidelity requirement? Need $\sim 83 \%$ fidelity in general to pass.

Numerical results for $x^{2} \bmod N$ with $\log N=512$ bits. Here: make transformation $x^{2} \bmod N \Rightarrow(k x)^{2} \bmod k^{2} N$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of adaptive hardcore bit helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of adaptive hardcore bit helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$ but they are recursive and hard to make reversible.

Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

$$
\mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

Getting rid of adaptive hardcore bit helps!
$x^{2} \bmod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n) \ldots$ but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity

Classical AND
Quantum AND (Toffoli)

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Lots of time and space overhead!

Technique: taking out the garbage

$$
\text { Goal: } \mathcal{U}_{f}|x\rangle\left|0^{\otimes n}\right\rangle=|x\rangle|f(x)\rangle
$$

When converting classical circuits to quantum:
Garbage bits: extra entangled outputs due to unitarity
Let \mathcal{U}_{f}^{\prime} be a unitary generating garbage bits $g_{f}(x)$:

Can we "measure them away" instead?

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in Hadamard basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in Hadamard basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{n \cdot g_{f}(x)}$ on every term.

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in Hadamard basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{n \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{h \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{h \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in Hadamard basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{h \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{h \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{h \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in Hadamard basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{h \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{h \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum!

Technique: taking out the garbage

Measure garbage bits $g_{f}(x)$ in Hadamard basis, get some string h. End up with state:

$$
\sum_{x}(-1)^{n \cdot g_{f}(x)}|x\rangle|f(x)\rangle
$$

In general useless: unique phase $(-1)^{n \cdot g_{f}(x)}$ on every term.
But after collapsing onto a single output:

$$
\left[(-1)^{n \cdot g_{f}\left(x_{0}\right)}\left|x_{0}\right\rangle+(-1)^{n \cdot g_{f}\left(x_{1}\right)}\left|x_{1}\right\rangle\right]|y\rangle
$$

Verifier can efficiently compute $g_{f}(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum! 1024 -bit $x^{2} \bmod N$ costs only 10^{6} Toffoli gates.

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow
"Box-adjacent" ideas:
- Explore other protocols (fix IQP and make it fast?)

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow
"Box-adjacent" ideas:
- Explore other protocols (fix IQP and make it fast?)
- Remove trapdoor-hash-based cryptography?

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow
"Box-adjacent" ideas:
- Explore other protocols (fix IQP and make it fast?)
- Remove trapdoor-hash-based cryptography?

Paths forward

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow
"Box-adjacent" ideas:
- Explore other protocols (fix IQP and make it fast?)
- Remove trapdoor-hash-based cryptography?

Way outside the box?

Backup!

TCF constructions

TCF	A.H.C.B.	Gate count	n for hardness
LWE [1]	\checkmark	$\mathcal{O}\left(n^{2} \log ^{2} n\right)$	10^{4}
Ring-LWE [2]	x	$\mathcal{O}\left(n \log ^{2} n\right)$	10^{3}
$x^{2} \bmod N[3]$	x	$\mathcal{O}(n \log n)$	10^{3}
DDH [3]	x	$\mathcal{O}\left(n^{3} \log ^{2} n\right)$	10^{2}

A.H.C.B. = "adaptive hard core bit"
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

TCF constructions

TCF	A.H.C.B.	Gate count	n for hardness
LWE [1]	\checkmark	$\mathcal{O}\left(n^{2} \log ^{2} n\right)$	10^{4}
Ring-LWE [2]	x	$\mathcal{O}\left(n \log ^{2} n\right)$	10^{3}
$x^{2} \bmod N[3]$	x	$\mathcal{O}(n \log n)$	10^{3}
DDH [3]	x	$\mathcal{O}\left(n^{3} \log ^{2} n\right)$	10^{2}

A.H.C.B. = "adaptive hard core bit"

Remarks:

- Removing adaptive hardcore bit requirement helps!
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

TCF constructions

TCF	A.H.C.B.	Gate count	n for hardness
LWE [1]	\checkmark	$\mathcal{O}\left(n^{2} \log ^{2} n\right)$	10^{4}
Ring-LWE [2]	x	$\mathcal{O}\left(n \log ^{2} n\right)$	10^{3}
$x^{2} \bmod N[3]$	x	$\mathcal{O}(n \log n)$	10^{3}
DDH [3]	x	$\mathcal{O}\left(n^{3} \log ^{2} n\right)$	10^{2}

A.H.C.B. = "adaptive hard core bit"

Remarks:

- Removing adaptive hardcore bit requirement helps!
- Can't just plug in n-constant factors
[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)
[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots $\left(x_{0}, x_{1},-x_{0},-x_{1}\right)$.

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots ($x_{0}, x_{1},-x_{0},-x_{1}$). Set domain to $[0, N / 2]$ to make it 2-to-1

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots ($x_{0}, x_{1},-x_{0},-x_{1}$). Set domain to $[0, N / 2]$ to make it 2-to-1

- Finding a claw as hard as factoring N

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots ($x_{0}, x_{1},-x_{0},-x_{1}$). Set domain to $[0, N / 2]$ to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
- Simple to implement, asymptotically fast algorithms
- Classical hardness in practice extremely well studied

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots ($x_{0}, x_{1},-x_{0},-x_{1}$). Set domain to $[0, N / 2]$ to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
- Simple to implement, asymptotically fast algorithms
- Classical hardness in practice extremely well studied
- $\mathcal{O}(n \log n \log \log n)$ Schonhage-Strassen multiplication seems out of reach, but

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots ($x_{0}, x_{1},-x_{0},-x_{1}$). Set domain to $[0, N / 2]$ to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
- Simple to implement, asymptotically fast algorithms
- Classical hardness in practice extremely well studied
- $\mathcal{O}(n \log n \log \log n)$ Schonhage-Strassen multiplication seems out of reach, but
- $\mathcal{O}\left(n^{1.58}\right)$ Karatsuba mult. beats naive $\mathcal{O}\left(n^{2}\right)$ alg. at $n \sim 100$ (much earlier than in the classical case!)

$$
y=x^{2} \bmod N \text { with } N=p q
$$

Each y has 4 roots ($x_{0}, x_{1},-x_{0},-x_{1}$). Set domain to $[0, N / 2]$ to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
- Simple to implement, asymptotically fast algorithms
- Classical hardness in practice extremely well studied
- $\mathcal{O}(n \log n \log \log n)$ Schonhage-Strassen multiplication seems out of reach, but
- $\mathcal{O}\left(n^{1.58}\right)$ Karatsuba mult. beats naive $\mathcal{O}\left(n^{2}\right)$ alg. at $n \sim 100$ (much earlier than in the classical case!)

Q. advantage in 10^{6} Toffoli gates

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from $\operatorname{DDH}[1,2]$: linear algebra in the exponent

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from $\operatorname{DDH}[1,2]$: linear algebra in the exponent
$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)
[2] Freeman, Goldreich, Klitz, Rosen, Segev. "More constructions of lossy and correlation-secure trapdoor functions" (2010)

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from $\operatorname{DDH}[1,2]$: linear algebra in the exponent
$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)
[2] Freeman, Goldreich, Klitz, Rosen, Segev. "More constructions of lossy and correlation-secure trapdoor functions" (2010)

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)
[2] Freeman, Goldreich, Klitz, Rosen, Segev. "More constructions of lossy and correlation-secure trapdoor functions" (2010)

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from $\operatorname{DDH}[1,2]$: linear algebra in the exponent

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
4. Return $p k=\left(g^{M}\right), s k=(g, M)$
[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)
[2] Freeman, Goldreich, Klitz, Rosen, Segev. "More constructions of lossy and correlation-secure trapdoor functions" (2010)

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent
$p k=\left(g^{M}\right)$, sk $=(g, M)$. On input $x \in\{0,1\}^{k}:$

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent
$p k=\left(g^{M}\right)$, $s k=(g, M)$. On input $x \in\{0,1\}^{k}$:
Evaluation: $f(x)=g^{M x}$

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from $\operatorname{DDH}[1,2]$: linear algebra in the exponent
$p k=\left(g^{M}\right), s k=(g, M)$. On input $x \in\{0,1\}^{k}:$
Evaluation: $f(x)=g^{M x}$

Inversion: $f^{-1}(f(x), M)=g^{M^{-1} M x}=g^{x}$
Easy to find x from g^{x} by brute force

Trapdoor from Decisional Diffie-Hellman (DDH)

Trapdoor functions from $\operatorname{DDH}[1,2]$: linear algebra in the exponent
$p k=\left(g^{M}\right)$, sk $=(g, M)$. On input $x \in\{0,1\}^{k}$:
Evaluation: $f(x)=g^{M x}$

Inversion: $f^{-1}(f(x), M)=g^{M^{-1} M x}=g^{x}$
Easy to find x from g^{x} by brute force

Security proof: Given g^{M}, DDH hides rank of M. Inversion would imply algorithm to determine if M is full rank.
[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)
[2] Freeman, Goldreich, Klitz, Rosen, Segev. "More constructions of lossy and correlation-secure trapdoor functions" (2010)

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{a}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
4. Choose $s \in\{0,1\}^{k}$

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
4. Choose $s \in\{0,1\}^{k}$
5. Return $p k=\left(g^{M}, g^{M s}\right), s k=(g, M, s)$

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
4. Choose $s \in\{0,1\}^{k}$
5. Return $p k=\left(g^{M}, g^{M s}\right), s k=(g, M, s)$

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
4. Choose $s \in\{0,1\}^{k}$
5. Return $p k=\left(g^{M}, g^{M s}\right), s k=(g, M, s)$

Evaluation:

Let $d \sim \mathcal{O}\left(k^{2}\right)$. Define two functions $f_{b}: \mathbb{Z}_{d}^{k} \rightarrow \mathbb{G}^{k}$:

$$
f_{0}(x)=g^{M x} \quad f_{1}(x)=g^{M x} g^{M s}=g^{M(x+s)}
$$

TCF from DDH

$\operatorname{Gen}\left(1^{\lambda}\right)$

1. Choose group \mathbb{G} of order $q \sim \mathcal{O}\left(2^{\lambda}\right)$, and generator g
2. Choose random invertible $M \in \mathbb{Z}_{q}^{k \times k}$ for $k>\log q$
3. Compute $g^{M}=\left(g^{M_{i j}}\right) \in \mathbb{G}^{k \times k}$
4. Choose $s \in\{0,1\}^{k}$
5. Return $p k=\left(g^{M}, g^{M s}\right), s k=(g, M, s)$

Evaluation:

Let $d \sim \mathcal{O}\left(k^{2}\right)$. Define two functions $f_{b}: \mathbb{Z}_{d}^{k} \rightarrow \mathbb{G}^{k}$:

$$
f_{0}(x)=g^{M x} \quad f_{1}(x)=g^{M x} g^{M s}=g^{M(x+s)}
$$

Inversion: $f^{-1}\left(f_{0}(x), M\right)=g^{M^{-1} M X}=g^{x}$ (poly-time brute force)
GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

TCF from DDH: does it help?

- Via elliptic curves, can significantly reduce space requirement

TCF from DDH: does it help?

- Via elliptic curves, can significantly reduce space requirement
- But quantum circuit for group operation is complicated

TCF from DDH: does it help?

- Via elliptic curves, can significantly reduce space requirement
- But quantum circuit for group operation is complicated
- Need to perform as many group operations as Shor's algorithm!

TCF from DDH: does it help?

- Via elliptic curves, can significantly reduce space requirement
- But quantum circuit for group operation is complicated
- Need to perform as many group operations as Shor's algorithm!
- Reversible Euclidean algorithm is hard, maybe irreversible optimization can help?

The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want $A=B$. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

Quantum: $\cos ^{2}(\pi / 8) \approx 85 \%$ Classical: 75\%

Full protocol

Prover (quantum)

Round 1

