

# Classical verification of quantum computational advantage

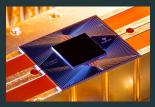
Gregory D. Kahanamoku-Meyer October 8, 2021

Theory collaborators:

Norman Yao (Berkeley Physics) Umesh Vazirani (Berkeley CS) Soonwon Choi (MIT Physics) arXiv:1912.05547 arXiv:2104.00687



#### Recent experimental demonstrations:

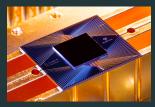


Random circuit sampling [Arute et al., Nature '19]



Gaussian boson sampling [Zhong et al., Science '20]

#### Recent experimental demonstrations:



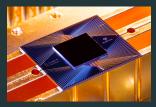
Random circuit sampling [Arute et al., Nature '19]



Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments  $\rightarrow$  impossible to classically simulate

#### Recent experimental demonstrations:



Random circuit sampling [Arute et al., Nature '19]



Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments  $\rightarrow$  impossible to classically simulate

"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.]

#### Recent experimental demonstrations:



Random circuit sampling [Arute et al., Nature '19]



Gaussian boson sampling [Zhong et al., Science '20]

Largest experiments  $\rightarrow$  impossible to classically simulate

"... [Rule] out alternative [classical] hypotheses that might be plausible in this experiment" [Zhong et al.] Quantum is the only reasonable explanation for observed behavior

Stronger: rule out all classical hypotheses, even adversarial!

Stronger: rule out all classical hypotheses, even adversarial!



Local: powerfully refute the extended Church-Turing thesis

Stronger: rule out all classical hypotheses, even adversarial!

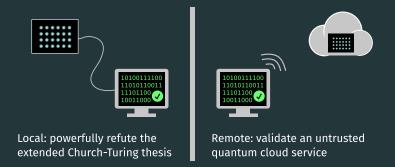


Local: powerfully refute the extended Church-Turing thesis



Remote: validate an untrusted quantum cloud service

Stronger: rule out all classical hypotheses, even adversarial!



Proof not specific to quantum mechanics: disprove null hypothesis that output was generated classically.

Need computational assumption-really an "argument"

#### Efficiently-verifiable test that only quantum computers can pass.

#### Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:



# NISQ verifiable quantum advantage

Trivial solution: integer factorization

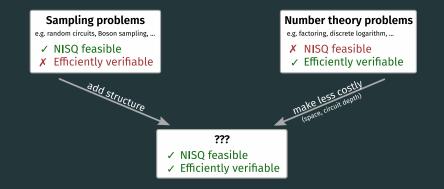
# NISQ verifiable quantum advantage

Trivial solution: integer factorization... but we want near-term!

# NISQ verifiable quantum advantage

#### Trivial solution: integer factorization... but we want near-term!

#### NISQ: Noisy Intermediate-Scale Quantum devices



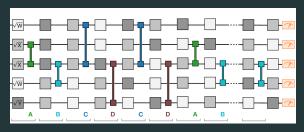
# Sampling problems

Task: generate samples from a "hard" probability distribution.

# Sampling problems

Task: generate samples from a "hard" probability distribution.

#### Random circuit sampling:



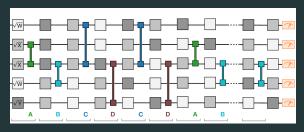
Arute et al. 2019

· Specify distribution via a quantum circuit

# Sampling problems

Task: generate samples from a "hard" probability distribution.

### Random circuit sampling:



Arute et al. 2019

- · Specify distribution via a quantum circuit
- Intuitive classical hardness: no structure  $\rightarrow$  need to simulate quantum, which is hard

# Adding structure to sampling problems

Idea: some property of samples that we can check?

Idea: some *property* of samples that we can check? Generically: seems difficult to make work.

The point of random circuits is that they don't have structure!

Idea: some *property* of samples that we can check? Generically: seems difficult to make work.

The point of random circuits is that they don't have structure!

IQP circuits [Shepherd and Bremner, '08]:

- Hide a secret string **s** in the quantum circuit
- Set up circuit so it is *biased* to generate samples  $\mathbf{x}$  with  $\mathbf{x}^{\mathsf{T}} \cdot \mathbf{s} = 0$ .

Consider a matrix  $P \in \{0, 1\}^{k \times n}$  and "action"  $\theta$ .

Consider a matrix  $P \in \{0, 1\}^{k \times n}$  and "action"  $\theta$ .

Let 
$$H = \sum_{i} \prod_{j} X_{j}^{P_{ij}}$$
.

Example:

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

#### Consider a matrix $P \in \{0, 1\}^{k \times n}$ and "action" $\theta$ .

Let  $H = \sum_{i} \prod_{j} X_{j}^{P_{ij}}$ .

Example:

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

Distribution of sampling result **X**:

$$\Pr[\mathbf{X} = \mathbf{X}] = \left| \left\langle \mathbf{X} \mid e^{-iH\theta} \mid \mathbf{0} \right\rangle \right|^2 \tag{2}$$

#### Consider a matrix $P \in \{0, 1\}^{k \times n}$ and "action" $\theta$ .

Let  $H = \sum_{i} \prod_{j} X_{j}^{P_{ij}}$ .

Example:

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

Distribution of sampling result X:

$$\Pr[\mathbf{X} = \mathbf{x}] = \left| \left\langle \mathbf{x} \mid e^{-iH\theta} \mid \mathbf{0} \right\rangle \right|^2 \tag{2}$$

Bremner, Jozsa, Shepherd '11: classically sampling IQP circuits would collapse polynomial heirarchy

Bremner, Montanaro, Shepherd '16: average case is likely hard as well

Let  $\theta = \pi/8$  and *P* have the form:



#### G<sup>T</sup> is generator of Quadratic Residue code, *R* random.

Let  $\theta = \pi/8$  and *P* have the form:



G<sup>T</sup> is generator of Quadratic Residue code, R random.

$$\Pr[\mathbf{X}^{\mathsf{T}} \cdot \mathbf{s} = 0] = \mathop{\mathbb{E}}_{\mathbf{x}} \left[ \cos^2 \left( \frac{\pi}{8} (1 - 2 \operatorname{wt}(G\mathbf{x})) \right) \right]$$

Let  $\theta = \pi/8$  and *P* have the form:



G<sup>T</sup> is generator of Quadratic Residue code, R random.

$$\Pr[\mathbf{X}^{\mathsf{T}} \cdot \mathbf{s} = 0] = \mathop{\mathbb{E}}_{\mathbf{x}} \left[ \cos^2 \left( \frac{\pi}{8} (1 - 2 \operatorname{wt}(G\mathbf{x})) \right) \right]$$

QR code: codewords have  $wt(\mathbf{c}) \mod 4 \in \{0, -1\}$ 

Let  $\theta = \pi/8$  and *P* have the form:



G<sup>T</sup> is generator of Quadratic Residue code, R random.

$$\Pr[\mathbf{X}^{\mathsf{T}} \cdot \mathbf{S} = 0] = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$$

QR code: codewords have  $wt(\mathbf{c}) \mod 4 \in \{0, -1\}$ 

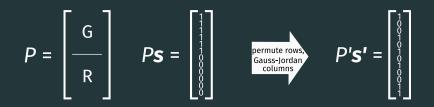
# IQP: Hiding s

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] = ?$ 



IQP: Hiding s

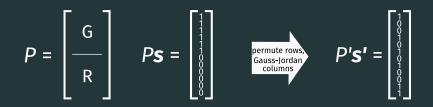
Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] = ?$ 



Scrambling preserves quantum success rate.

IQP: Hiding s

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] = ?$ 



Scrambling preserves quantum success rate.

**Conjecture [SB '08]:** Scrambling *P* cryptographically hides *G* (and equivalently **s**)

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Assuming *s* hidden, can classical do better than 0.5? **Try to take advantage properties of embedded code.** 

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Assuming *s* hidden, can classical do better than 0.5? **Try to take advantage properties of embedded code.** 

Consider choosing random  $\boldsymbol{d} \stackrel{\$}{\leftarrow} \{0,1\}^n$ , and letting

$$\mathbf{y} = \sum_{\substack{\boldsymbol{p} \in \operatorname{rows}(\boldsymbol{P})\\ \boldsymbol{p} \cdot \boldsymbol{d} = 1}} \boldsymbol{p}$$

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Assuming *s* hidden, can classical do better than 0.5? **Try to take advantage properties of embedded code.** 

Consider choosing random  $\boldsymbol{d} \stackrel{\$}{\leftarrow} \{0,1\}^n$ , and letting

$$\mathbf{y} = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = 1}} \mathbf{p}$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = \sum_{\substack{\mathbf{p} \in \operatorname{rows}(\mathbf{P})\\ \mathbf{p} \cdot \mathbf{d} = 1}} \mathbf{p} \cdot \mathbf{s} \pmod{2}$$

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Assuming *s* hidden, can classical do better than 0.5? **Try to take advantage properties of embedded code.** 

Consider choosing random  $\boldsymbol{d} \stackrel{\$}{\leftarrow} \{0,1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = 1}} p$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = p \cdot \mathbf{s} = 1}} 1 \pmod{2}$$

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Assuming *s* hidden, can classical do better than 0.5? **Try to take advantage properties of embedded code.** 

Consider choosing random  $\boldsymbol{d} \stackrel{\$}{\leftarrow} \{0,1\}^n$ , and letting

$$\mathbf{y} = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = 1}} \mathbf{p}$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{s} = 1}} \mathbf{p} \cdot \mathbf{d} \pmod{2}$$

#### IQP: Classical strategy

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Best classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Assuming **s** hidden, can classical do better than 0.5? **Try to take advantage properties of embedded code.** 

Consider choosing random  $\boldsymbol{d} \stackrel{\$}{\leftarrow} \{0,1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = 1}} p$$

Then:

$$\textbf{\textit{y}} \cdot \textbf{\textit{s}} = \operatorname{wt}(G\textbf{\textit{d}}) \pmod{2}$$

QR code codewords are 50% even parity, 50% odd parity.

Quantum:  $\Pr[X^{\intercal} \cdot \mathbf{s} = 0] \approx 0.85$ Classical:  $\Pr[Y^{\intercal} \cdot \mathbf{s} = 0] \stackrel{?}{=} 0.5$ 

Consider choosing random  $d, e \stackrel{\$}{\leftarrow} \{0, 1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = p \cdot e = 1}} p$$

Quantum:  $\Pr[X^{\mathsf{T}} \cdot \mathbf{s} = 0] \approx 0.85$ Classical:  $\Pr[Y^{\mathsf{T}} \cdot \mathbf{s} = 0] \stackrel{?}{=} 0.5$ 

Consider choosing random  $d, e \stackrel{\$}{\leftarrow} \{0, 1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = p \cdot e = 1}} p$$

Then:

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Consider choosing random  $\boldsymbol{d}, \boldsymbol{e} \stackrel{\$}{\leftarrow} \{0, 1\}^n$ , and letting

$$y = \sum_{\substack{p \in rows(P) \\ p \cdot d = p \cdot e = 1}} p$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = \sum_{\substack{\boldsymbol{p} \in \operatorname{rows}(\boldsymbol{P}) \\ \boldsymbol{p} \cdot \boldsymbol{d} = \boldsymbol{p} \cdot \boldsymbol{e} = 1}} \boldsymbol{p} \cdot \mathbf{s} \pmod{2}$$

Quantum:  $\Pr[X^{\intercal} \cdot s = 0] \approx 0.85$ Classical:  $\Pr[Y^{\intercal} \cdot s = 0] \stackrel{?}{=} 0.5$ 

Consider choosing random  $\boldsymbol{d}, \boldsymbol{e} \stackrel{\$}{\leftarrow} \{0, 1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = p \cdot e = 1}} p$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = \sum_{\substack{\mathbf{p} \in \operatorname{rows}(\mathbf{p}) \\ \mathbf{p} \cdot \mathbf{s} = 1}} (\mathbf{p} \cdot \mathbf{d}) (\mathbf{p} \cdot \mathbf{e}) \pmod{2}$$

Quantum:  $\Pr[X^{\mathsf{T}} \cdot \mathbf{s} = 0] \approx 0.85$ Classical:  $\Pr[Y^{\mathsf{T}} \cdot \mathbf{s} = 0] \stackrel{?}{=} 0.5$ 

Consider choosing random  $\boldsymbol{d}, \boldsymbol{e} \stackrel{\$}{\leftarrow} \{0, 1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = p \cdot e = 1}} p$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = (G\mathbf{d}) \cdot (G\mathbf{e}) \pmod{2}$$

Fact:  $(Gd) \cdot (Ge) = 1$  iff Gd, Ge both have odd parity.

Quantum:  $Pr[X^{T} \cdot s = 0] \approx 0.85$ Classical:  $Pr[Y^{T} \cdot s = 0] = 0.75$ 

Consider choosing random  $\boldsymbol{d}, \boldsymbol{e} \stackrel{\$}{\leftarrow} \{0, 1\}^n$ , and letting

$$y = \sum_{\substack{p \in \operatorname{rows}(P) \\ p \cdot d = p \cdot e = 1}} p$$

Then:

$$\mathbf{y} \cdot \mathbf{s} = (G\mathbf{d}) \cdot (G\mathbf{e}) \pmod{2}$$

Fact:  $(Gd) \cdot (Ge) = 1$  iff Gd, Ge both have odd parity. Thus  $y \cdot s = 0$  with probability 3/4!

#### IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

#### IQP: Can we do better classically? [GDKM '19 arXiv:1912.05547]

Key: Correlate samples to attack the key s

Consider choosing one random  $d \stackrel{\$}{\leftarrow} \{0,1\}^n$ , held constant over many different  $e_i \stackrel{\$}{\leftarrow} \{0,1\}^n$ 

$$\mathbf{y}_i = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = \mathbf{p} \cdot \mathbf{e}_i = 1}} \mathbf{p}$$

 $y_i \cdot s = 1$  iff Gd,  $Ge_i$  both have odd parity.

Consider choosing one random  $\boldsymbol{d} \stackrel{\$}{\leftarrow} \{0,1\}^n$ , held constant over many different  $\boldsymbol{e}_i \stackrel{\$}{\leftarrow} \{0,1\}^n$ 

$$\mathbf{y}_i = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = \mathbf{p} \cdot \mathbf{e}_i = 1}} \mathbf{p}$$

 $y_i \cdot s = 1$  iff Gd,  $Ge_i$  both have odd parity.

Gd has even parity  $\Rightarrow all y_i \cdot s = 0$ 

Consider choosing one random  $d \stackrel{\$}{\leftarrow} \{0,1\}^n$ , held constant over many different  $e_i \stackrel{\$}{\leftarrow} \{0,1\}^n$ 

$$\mathbf{y}_i = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = \mathbf{p} \cdot \mathbf{e}_i = 1}} \mathbf{p}$$

 $y_i \cdot s = 1$  iff Gd,  $Ge_i$  both have odd parity.

Gd has even parity  $\Rightarrow all y_i \cdot s = 0$ Let  $y_i$  form rows of a matrix M, such that Ms = 0

Consider choosing one random  $d \stackrel{\$}{\leftarrow} \{0,1\}^n$ , held constant over many different  $e_i \stackrel{\$}{\leftarrow} \{0,1\}^n$ 

$$\mathbf{y}_i = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = \mathbf{p} \cdot \mathbf{e}_i = 1}} \mathbf{p}$$

 $y_i \cdot s = 1$  iff Gd,  $Ge_i$  both have odd parity.

Gd has even parity  $\Rightarrow all y_i \cdot s = 0$ Let  $y_i$  form rows of a matrix M, such that Ms = 0Can solve for s! ... If M has high rank.

Consider choosing one random  $d \stackrel{\$}{\leftarrow} \{0,1\}^n$ , held constant over many different  $e_i \stackrel{\$}{\leftarrow} \{0,1\}^n$ 

$$\mathbf{y}_i = \sum_{\substack{p \in \operatorname{rows}(P) \\ \mathbf{p} \cdot \mathbf{d} = \mathbf{p} \cdot \mathbf{e}_i = 1}} \mathbf{p}$$

 $y_i \cdot s = 1$  iff Gd,  $Ge_i$  both have odd parity.

Gd has even parity  $\Rightarrow all y_i \cdot s = 0$ Let  $y_i$  form rows of a matrix M, such that Ms = 0Can solve for s! ... If M has high rank. Empirically it does!

#### IQP: can it be fixed?

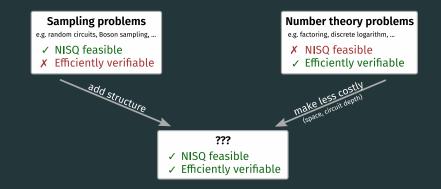
• Attack relies on properties of QR code

- $\cdot\,$  Attack relies on properties of QR code
- Could pick a different G for which this attack would not succeed?

- $\cdot\,$  Attack relies on properties of QR code
- Could pick a different G for which this attack would not succeed?
- Ultimately, would like to rely on standard cryptographic assumptions...

# NISQ verifiable quantum advantage

#### NISQ: Noisy Intermediate-Scale Quantum devices



#### Multiple rounds of interaction between the prover and verifier



Round 1: Prover commits to a specific quantum state

Round 2+: Verifier asks for measurement in specific basis

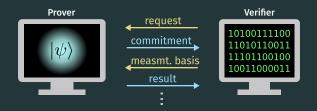
#### Multiple rounds of interaction between the prover and verifier



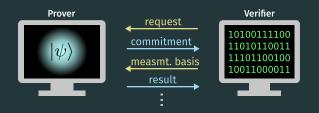
Round 1: Prover commits to a specific quantum state Round 2+: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in *any* basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640). Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)



From a proof of security perspective:



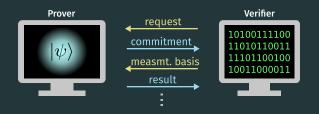
From a proof of security perspective:

• **Classical** cheater can be rewound: extract measurement results in all choices of basis



From a proof of security perspective:

- **Classical** cheater can be rewound: extract measurement results in all choices of basis
- Quantum prover's measurements are irreversible



From a proof of security perspective:

- **Classical** cheater can be rewound: extract measurement results in all choices of basis
- Quantum prover's measurements are irreversible

"Rewinding" proof of hardness doesn't go through for quantum prover—can use post-quantum cryptography!

# State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a trapdoor claw-free function family (TCF) (Gen,  $\{(f_i, T_i)\}$ ).

# State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

#### Consider a trapdoor claw-free function family (TCF) (Gen, $\{(f_i, T_i)\}$ ).

Prover



Evaluate  $f_i$  on uniform superposition  $\sum_x |x\rangle |f_i(x)\rangle$ Measure 2<sup>nd</sup> register as y

#### Verifier



$$(f_i, t_i) \leftarrow \operatorname{Gen}(1^{\lambda})$$

Store y as commitment compute  $(x_0, x_1) \leftarrow T_i(y, t_i)$ 

# State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

#### Consider a trapdoor claw-free function family (TCF) (Gen, $\{(f_i, T_i)\}$ ).



Evaluate  $f_i$  on uniform superposition  $\sum_x |x\rangle |f_i(x)\rangle$ Measure 2<sup>nd</sup> register as y

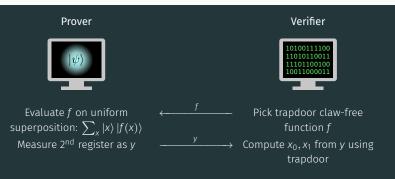
#### Verifier

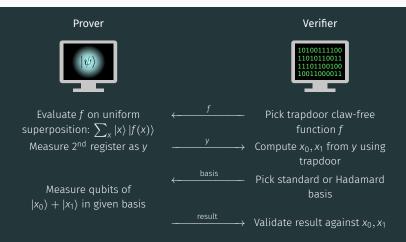


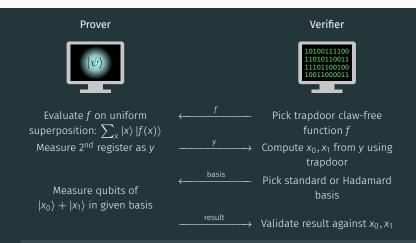
$$(f_i, t_i) \leftarrow \operatorname{Gen}(1^{\lambda})$$

Store y as commitment compute  $(x_0, x_1) \leftarrow T_i(y, t_i)$ 

Prover has committed to the state  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

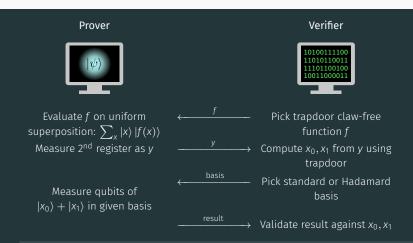






Subtlety: claw-free does *not* imply hardness of generating measurement outcomes!

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)



Subtlety: claw-free does *not* imply hardness of generating measurement outcomes! Learning-with-Errors TCF has adaptive hardcore bit

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

State after commitment round:  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

State after commitment round:  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

Measurement outcomes:

• Standard basis:  $x_0$  or  $x_1$ 

State after commitment round:  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

Measurement outcomes:

- Standard basis:  $x_0$  or  $x_1$
- Hadamard basis: Some string d with  $d \cdot (x_0 \oplus x_1) = 0$

State after commitment round:  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

Measurement outcomes:

- Standard basis:  $x_0$  or  $x_1$
- Hadamard basis: Some string d with  $d \cdot (x_0 \oplus x_1) = 0$

State after commitment round:  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

Measurement outcomes:

- Standard basis:  $x_0$  or  $x_1$
- Hadamard basis: Some string d with  $d \cdot (x_0 \oplus x_1) = 0$

#### Adaptive hardcore bit:

Computationally hard to generate a tuple  $(y, x_0, d, b)$  such that:  $d \cdot (x_0 + x_1) = b$  $f_i(x_0) = f_i(x_1) = y$ 

State after commitment round:  $(|x_0\rangle + |x_1\rangle) |y\rangle$ 

Measurement outcomes:

- Standard basis:  $x_0$  or  $x_1$
- Hadamard basis: Some string d with  $d \cdot (x_0 \oplus x_1) = 0$

#### Adaptive hardcore bit:

Computationally hard to generate a tuple  $(y, x_0, d, b)$  such that:  $d \cdot (x_0 + x_1) = b$  $f_i(x_0) = f_i(x_1) = y$ 

#### Note: AHCB can be post-quantum secure and protocol still works!

# Trapdoor claw-free functions

| TCF              | Trapdoor | Claw-free | Adaptive hard-core bit |
|------------------|----------|-----------|------------------------|
| LWE [1]          | ✓        | ✓         | $\checkmark$           |
| Ring-LWE [2]     | ✓        | ✓         | ×                      |
| $x^2 \mod N$ [3] | ✓        | ✓         | ×                      |
| DDH [3]          | ✓        | ✓         | ×                      |

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

# Trapdoor claw-free functions

| TCF              | Trapdoor | Claw-free | Adaptive hard-core bit |
|------------------|----------|-----------|------------------------|
| LWE [1]          | ✓        | ✓         | $\checkmark$           |
| Ring-LWE [2]     | ✓        | ✓         | ×                      |
| $x^2 \mod N$ [3] | ✓        | 1         | ×                      |
| DDH [3]          | 1        | 1         | ×                      |

BKVV '20 [2]: Non-interactive protocol without adaptive hardcore bit, in random oracle model

$$d \cdot (x_0 \oplus x_1) = H(x_0) \oplus H(x_1)$$

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

# Trapdoor claw-free functions

| TCF              | Trapdoor | Claw-free | Adaptive hard-core bit |
|------------------|----------|-----------|------------------------|
| LWE [1]          | ✓        | ✓         | $\checkmark$           |
| Ring-LWE [2]     | 1        | ✓         | ×                      |
| $x^2 \mod N$ [3] | 1        | ✓         | ×                      |
| DDH [3]          | 1        | 1         | ×                      |

BKVV '20 [2]: Non-interactive protocol without adaptive hardcore bit, in random oracle model

 $d \cdot (x_0 \oplus x_1) = H(x_0) \oplus H(x_1)$ 

#### Can we remove AHCB in the standard model?

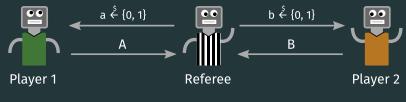
[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640) [2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

**Classical optimal strategy:** return equal values, hope  $a \cdot b = 0$ . 75% success rate.

Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

**Quantum:** Bell pair:  $|\psi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle$ 

Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

Quantum: Bell pair:  $|\psi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle = |\leftarrow\leftarrow\rangle + |\rightarrow\rightarrow\rangle = \cdots$ 

Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

Quantum: Bell pair:  $|\psi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle = |\leftarrow\leftarrow\rangle + |\rightarrow\rightarrow\rangle = \cdots$ 

Aligned basis  $\rightarrow$  same result; antialigned  $\rightarrow$  opposite result!

Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

Quantum: Bell pair:  $|\psi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle = |\leftarrow\leftarrow\rangle + |\rightarrow\rightarrow\rangle = \cdots$ 

Aligned basis  $\rightarrow$  same result;

antialigned  $\rightarrow$  opposite result!



Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

Quantum: Bell pair:  $|\psi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle = |\leftarrow\leftarrow\rangle + |\rightarrow\rightarrow\rangle = \cdots$ 

Aligned basis ightarrow same result;

antialigned  $\rightarrow$  opposite result!



Two-player cooperative game.



Players win if  $A \oplus B = a \cdot b$ 

Quantum: Bell pair:  $|\psi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle = |\leftarrow\leftarrow\rangle + |\rightarrow\rightarrow\rangle = \cdots$ 

Aligned basis  $\rightarrow$  same result;



antialigned  $\rightarrow$  opposite result!

Quantum: cos²(π/8) ≈ 85% Classical: 75%

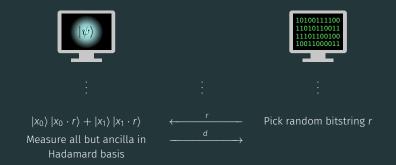
#### BCMVV '18 protocol



#### Replace Hadamard basis measurement with "1-player CHSH"

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

Replace Hadamard basis measurement with two-step process: "condense"  $x_0, x_1$  into a single qubit, and then do a "Bell test."



Replace Hadamard basis measurement with two-step process: "condense"  $x_0, x_1$  into a single qubit, and then do a "Bell test."



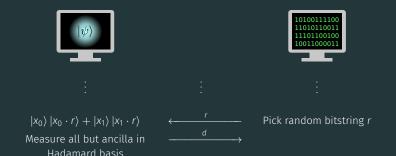
Single-qubit state:  $|x_0 \cdot r\rangle + |x_1 \cdot r\rangle$ 

Replace Hadamard basis measurement with two-step process: "condense"  $x_0, x_1$  into a single qubit, and then do a "Bell test."



Single-qubit state:  $|\uparrow\rangle$  or  $|\downarrow\rangle$  if  $x_0 \cdot r = x_1 \cdot r$ , otherwise  $|\leftrightarrow\rangle$  or  $|\rightarrow\rangle$ .

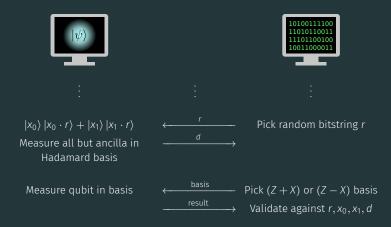
Replace Hadamard basis measurement with two-step process: "condense"  $x_0, x_1$  into a single qubit, and then do a "Bell test."



Single-qubit state:  $|\uparrow\rangle$  or  $|\downarrow\rangle$  if  $x_0 \cdot r = x_1 \cdot r$ , otherwise  $|\leftarrow\rangle$  or  $|\rightarrow\rangle$ . Polarization hidden via:

Cryptographic secret (here) ⇔ Non-communication (Bell test) GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Replace Hadamard basis measurement with two-step process: "condense"  $x_0, x_1$  into a single qubit, and then do a "Bell test."



# Computational Bell test: classical bound

Run protocol many times, collect statistics.

*p*<sub>s</sub>: Success rate for standard basis measurement.

 $p_{\text{CHSH}}$ : Success rate when performing CHSH-type measurement.

*p*<sub>s</sub>: Success rate for standard basis measurement.

 $p_{\text{CHSH}}$ : Success rate when performing CHSH-type measurement.

Under assumption of claw-free function:

Soundness (classical bound):  $p_s + 4p_{CHSH} - 4 < negl(n)$ 

*p*<sub>s</sub>: Success rate for standard basis measurement.

*p*<sub>CHSH</sub>: Success rate when performing CHSH-type measurement.
 Under assumption of claw-free function:

Soundness (classical bound):  $p_s + 4p_{CHSH} - 4 < \text{negl}(n)$ Completeness (ideal quantum):  $p_s = 1, p_{CHSH} = \cos^2(\pi/8)$ 

*p*<sub>s</sub>: Success rate for standard basis measurement.

*p*<sub>CHSH</sub>: Success rate when performing CHSH-type measurement.
 Under assumption of claw-free function:

Soundness (classical bound):  $p_s + 4p_{CHSH} - 4 < \text{negl}(n)$ Completeness (ideal quantum):  $p_s = 1, p_{CHSH} = \cos^2(\pi/8)$  $p_s + 4p_{CHSH} - 4 = \sqrt{2} - 1 \approx 0.414$ 

*p*<sub>s</sub>: Success rate for standard basis measurement.

 $p_{\text{CHSH}}$ : Success rate when performing CHSH-type measurement. Under assumption of claw-free function:

Soundness (classical bound):  $p_s + 4p_{CHSH} - 4 < \text{negl}(n)$ Completeness (ideal quantum):  $p_s = 1, p_{CHSH} = \cos^2(\pi/8)$  $p_s + 4p_{CHSH} - 4 = \sqrt{2} - 1 \approx 0.414$ 

**Note:** Let  $p_s = 1$ . Then for  $p_{CHSH}$ : Classical bound 75%, ideal quantum ~ 85%. Same as regular CHSH!

• Partial measurement

- Partial measurement
  - Required for multi-round classical interaction

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!
- Fidelity requirement

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!
- Fidelity requirement
  - $\cdot$  High fidelity needed to pass classical bound

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!
- Fidelity requirement
  - $\cdot$  High fidelity needed to pass classical bound
  - · Postselection scheme allows passing with arbitrarily low fidelities

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!
- Fidelity requirement
  - High fidelity needed to pass classical bound
  - · Postselection scheme allows passing with arbitrarily low fidelities
- Circuit sizes

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!
- Fidelity requirement
  - High fidelity needed to pass classical bound
  - · Postselection scheme allows passing with arbitrarily low fidelities
- Circuit sizes
  - $\cdot$  Need to implement public-key crypto. on a superposition

- Partial measurement
  - Required for multi-round classical interaction
  - U. Maryland experiment: first implementation in trapped ions!
- Fidelity requirement
  - High fidelity needed to pass classical bound
  - · Postselection scheme allows passing with arbitrarily low fidelities
- Circuit sizes
  - $\cdot$  Need to implement public-key crypto. on a superposition
  - Measurement scheme removes need for *reversibility* in quantum circuits—significant efficiency gains

# **TCF** constructions

| TCF              | A.H.C.B. | Gate count                  | n for hardness  |
|------------------|----------|-----------------------------|-----------------|
| LWE [1]          | ✓        | $\mathcal{O}(n^2 \log^2 n)$ | 104             |
| Ring-LWE [2]     | X        | $\mathcal{O}(n\log^2 n)$    | 10 <sup>3</sup> |
| $x^2 \mod N$ [3] | X        | $\mathcal{O}(n\log n)$      | 10 <sup>3</sup> |
| DDH [3]          | ×        | $\mathcal{O}(n^3 \log^2 n)$ | 10 <sup>2</sup> |

A.H.C.B. = "adaptive hard core bit"

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

# **TCF** constructions

| TCF              | A.H.C.B. | Gate count                  | n for hardness  |
|------------------|----------|-----------------------------|-----------------|
| LWE [1]          | ✓        | $\mathcal{O}(n^2 \log^2 n)$ | 104             |
| Ring-LWE [2]     | X        | $\mathcal{O}(n\log^2 n)$    | 10 <sup>3</sup> |
| $x^2 \mod N$ [3] | ×        | $\mathcal{O}(n\log n)$      | 10 <sup>3</sup> |
| DDH [3]          | ×        | $\mathcal{O}(n^3 \log^2 n)$ | 10 <sup>2</sup> |

A.H.C.B. = "adaptive hard core bit"

#### Remarks:

· Removing adaptive hardcore bit requirement helps!

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

# **TCF** constructions

| TCF              | A.H.C.B. | Gate count                  | n for hardness  |
|------------------|----------|-----------------------------|-----------------|
| LWE [1]          | ✓        | $\mathcal{O}(n^2 \log^2 n)$ | 104             |
| Ring-LWE [2]     | X        | $\mathcal{O}(n\log^2 n)$    | 10 <sup>3</sup> |
| $x^2 \mod N$ [3] | ×        | $\mathcal{O}(n\log n)$      | 10 <sup>3</sup> |
| DDH [3]          | ×        | $\mathcal{O}(n^3 \log^2 n)$ | 10 <sup>2</sup> |

A.H.C.B. = "adaptive hard core bit"

#### Remarks:

- · Removing adaptive hardcore bit requirement helps!
- Can't just plug in *n*—constant factors

[1] Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)



$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ .



$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ . Set domain to [0, N/2] to make it 2-to-1



$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ . Set domain to [0, N/2] to make it 2-to-1

• Finding a claw as hard as factoring N

$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ . Set domain to [0, N/2] to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
  - · Simple to implement, asymptotically fast algorithms
  - · Classical hardness in practice extremely well studied

$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ . Set domain to [0, N/2] to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
  - Simple to implement, asymptotically fast algorithms
  - · Classical hardness in practice extremely well studied
- $\mathcal{O}(n \log n \log \log n)$  Schonhage-Strassen multiplication seems out of reach, but

$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ . Set domain to [0, N/2] to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
  - Simple to implement, asymptotically fast algorithms
  - · Classical hardness in practice extremely well studied
- $\mathcal{O}(n \log n \log \log n)$  Schonhage-Strassen multiplication seems out of reach, but
- $\mathcal{O}(n^{1.58})$  Karatsuba mult. beats naive  $\mathcal{O}(n^2)$  alg. at  $n \sim 100$  (much earlier than in the classical case!)

$$y = x^2 \mod N$$
 with  $N = pq$ 

Each y has 4 roots  $(x_0, x_1, -x_0, -x_1)$ . Set domain to [0, N/2] to make it 2-to-1

- Finding a claw as hard as factoring N
- Features:
  - Simple to implement, asymptotically fast algorithms
  - · Classical hardness in practice extremely well studied
- +  $\mathcal{O}(n \log n \log \log n)$  Schonhage-Strassen multiplication seems out of reach, but
- $\mathcal{O}(n^{1.58})$  Karatsuba mult. beats naive  $\mathcal{O}(n^2)$  alg. at  $n \sim 100$  (much earlier than in the classical case!)

Q. advantage in 10<sup>6</sup> Toffoli gates

### Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $Gen(1^{\lambda})$ 

1. Choose group  $\mathbb{G}$  of order  $q \sim \mathcal{O}(2^{\lambda})$ , and generator g

[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $Gen(1^{\lambda})$ 

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^{\lambda})$ , and generator g
- 2. Choose random invertible  $\mathbf{M} \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$

[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)

### Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $Gen(1^{\lambda})$ 

- 1. Choose group  $\mathbb G$  of order  $q\sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$
- 3. Compute  $g^{\mathsf{M}} = (g^{\mathsf{M}_{ij}}) \in \mathbb{G}^{k \times k}$

[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)

### Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $Gen(1^{\lambda})$ 

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$
- 3. Compute  $g^{\mathsf{M}} = (g^{\mathsf{M}_{ij}}) \in \mathbb{G}^{k \times k}$
- 4. Return  $pk = (g^{M})$ , sk = (g, M)

[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $pk = (g^{M})$ , sk = (g, M). On input  $x \in \{0, 1\}^{k}$ :

### Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $pk = (g^M)$ , sk = (g, M). On input  $x \in \{0, 1\}^k$ : Evaluation:  $f(x) = g^{Mx}$ 

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $pk = (g^M)$ , sk = (g, M). On input  $x \in \{0, 1\}^k$ : Evaluation:  $f(x) = g^{Mx}$ 

**Inversion:**  $f^{-1}(f(x), M) = g^{M^{-1}Mx} = g^x$ Easy to find *x* from  $g^x$  by brute force

Trapdoor functions from DDH [1, 2]: linear algebra in the exponent

 $pk = (g^M)$ , sk = (g, M). On input  $x \in \{0, 1\}^k$ : Evaluation:  $f(x) = g^{Mx}$ 

**Inversion:**  $f^{-1}(f(x), M) = g^{M^{-1}Mx} = g^x$ Easy to find *x* from  $g^x$  by brute force

**Security proof:** Given  $g^M$ , DDH hides rank of *M*. Inversion would imply algorithm to determine if *M* is full rank.

[1] Peikert, Waters. "Lossy trapdoor functions and their applications" (2008)

### $\operatorname{Gen}(1^{\lambda})$

1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g

# $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^{\lambda})$ , and generator g
- 2. Choose random invertible  $\mathbf{M} \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$

# $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q\sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $\mathbf{M} \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$

3. Compute 
$$g^{\mathsf{M}} = (g^{\mathsf{M}_{ij}}) \in \mathbb{G}^{k \times k}$$

# $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$

3. Compute 
$$g^{\mathsf{M}} = (g^{\mathsf{M}_{ij}}) \in \mathbb{G}^{k \times k}$$

4. Choose  $\mathbf{s} \in \{0,1\}^k$ 

### $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$
- 3. Compute  $g^{\mathbf{M}} = (g^{\mathbf{M}_{ij}}) \in \mathbb{G}^{k \times k}$
- 4. Choose  $s \in \{0, 1\}^k$
- 5. Return  $pk = (g^{M}, g^{Ms}), sk = (g, M, s)$

### $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$
- 3. Compute  $g^{\mathbf{M}} = (g^{\mathbf{M}_{ij}}) \in \mathbb{G}^{k \times k}$
- 4. Choose  $s \in \{0, 1\}^k$
- 5. Return  $pk = (g^{M}, g^{Ms}), sk = (g, M, s)$

### $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times \overline{k}}$  for  $k > \log q$
- 3. Compute  $g^{\mathsf{M}} = (g^{\mathsf{M}_{ij}}) \in \mathbb{G}^{k \times k}$
- 4. Choose  $s \in \{0, 1\}^k$
- 5. Return  $pk = (g^{M}, g^{Ms})$ , sk = (g, M, s)

### **Evaluation:**

Let  $d \sim \mathcal{O}(k^2)$ . Define two functions  $f_b : \mathbb{Z}_d^k \to \mathbb{G}^k$ :  $f_0(x) = g^{Mx} \qquad f_1(x) = g^{Mx}g^{Ms} = g^{M(x+s)}$ 

### $\operatorname{Gen}(1^{\lambda})$

- 1. Choose group  $\mathbb G$  of order  $q \sim \mathcal O(2^\lambda)$ , and generator g
- 2. Choose random invertible  $M \in \mathbb{Z}_q^{k \times k}$  for  $k > \log q$
- 3. Compute  $g^{\mathsf{M}} = (g^{\mathsf{M}_{ij}}) \in \mathbb{G}^{k \times k}$
- 4. Choose  $s \in \{0, 1\}^k$
- 5. Return  $pk = (g^M, g^{Ms})$ ,  $sk = (\overline{g, M, s})$

### **Evaluation:**

Let 
$$d \sim \mathcal{O}(k^2)$$
. Define two functions  $f_b : \mathbb{Z}_d^k \to \mathbb{G}^k$ :  
 $f_0(x) = g^{Mx} \qquad f_1(x) = g^{Mx}g^{Ms} = g^{M(x+s)}$ 

**Inversion**:  $f^{-1}(f_0(x), M) = g^{M^{-1}Mx} = g^x$  (poly-time brute force)

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

 $\cdot$  Via elliptic curves, can significantly reduce space requirement

- Via elliptic curves, can significantly reduce space requirement
- $\cdot\,$  But quantum circuit for group operation is complicated

- Via elliptic curves, can significantly reduce space requirement
- $\cdot\,$  But quantum circuit for group operation is complicated
- Need to perform as many group operations as Shor's algorithm!

- Via elliptic curves, can significantly reduce space requirement
- $\cdot\,$  But quantum circuit for group operation is complicated
- Need to perform as many group operations as Shor's algorithm!
- Reversible Euclidean algorithm is hard, maybe irreversible optimization can help?

### Bottleneck: Evaluating TCF on quantum superposition

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

• Find more efficient TCFs

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- $\cdot$  ... public-key cryptography is just slow

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- $\cdot$  ... public-key cryptography is just slow

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

• Explore other protocols (fix IQP and make it fast?)

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Remove need for trapdoor (hash functions?)

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Remove need for trapdoor (hash functions?)
- Sub-exponential verification?

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Remove need for trapdoor (hash functions?)
- Sub-exponential verification?

### Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

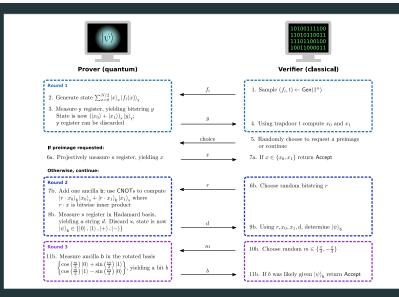
"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Remove need for trapdoor (hash functions?)
- Sub-exponential verification?

Way outside the box?

# Backup!

### Full protocol



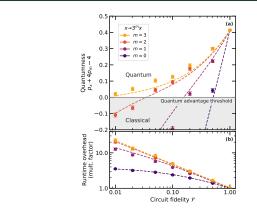
How to deal with high fidelity requirement? Need  $\sim 83\%$  fidelity in general to pass.

- How to deal with high fidelity requirement? Need  $\sim 83\%$  fidelity in general to pass.
- Can show: a prover holding  $(|x_0\rangle + |x_1\rangle) |y\rangle$  with  $\epsilon$  phase coherence passes!

- How to deal with high fidelity requirement? Need  $\sim 83\%$  fidelity in general to pass.
- Can show: a prover holding  $(|x_0\rangle + |x_1\rangle) |y\rangle$  with  $\epsilon$  phase coherence passes!
- When we generate  $\sum_{x} |x\rangle |f(x)\rangle$ , add redundancy to f(x), for bit flip error detection!

### Technique: postselection

How to deal with high fidelity requirement? Need  $\sim 83\%$  fidelity in general to pass.



Numerical results for  $x^2 \mod N$  with  $\log N = 512$  bits. Here: make transformation  $x^2 \mod N \Rightarrow (kx)^2 \mod k^2N$ 



#### Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!



Prof. Christopher Monroe



Dr. Daiwei Zhu



Dr. Crystal Noel

and others!



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

titite a second



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

CTTTTTT



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

FFFFFFF

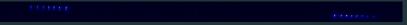
C.C.C.C.C.C.



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:





### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

FFFFFFF

C.C.C.C.C.C.



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

CTTTTTT



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

titite a second



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:



### Trapped Ion Quantum Information lab at U. Maryland

#### Working on demonstration of protocols in trapped ions!

Partial measurement:

#### Most demanding step in all these protocols: evaluating TCF

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$ 

# Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$ 

Getting rid of adaptive hardcore bit helps!

 $x^2 \mod N$  and Ring-LWE have classical circuits as fast as  $\mathcal{O}(n \log n)$ ...

# Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$ 

Getting rid of adaptive hardcore bit helps!

 $x^2 \mod N$  and **Ring-LWE** have classical circuits as fast as  $\mathcal{O}(n \log n)$ ...

but they are recursive and hard to make reversible.

Most demanding step in all these protocols: evaluating TCF

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$ 

Getting rid of adaptive hardcore bit helps!  $x^2 \mod N$  and **Ring-LWE** have classical circuits as fast as  $\mathcal{O}(n \log n)$ ... but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

**Goal:**  $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$ 

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity





Classical AND

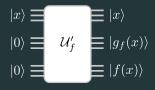
Quantum AND (Toffoli)

**Goal:**  $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$ 

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let  $\mathcal{U}'_f$  be a unitary generating garbage bits  $g_f(x)$ :

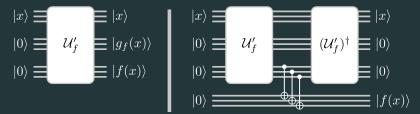


**Goal:**  $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$ 

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let  $\mathcal{U}'_f$  be a unitary generating garbage bits  $g_f(x)$ :

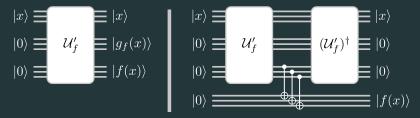


**Goal:**  $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$ 

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let  $\mathcal{U}'_f$  be a unitary generating garbage bits  $g_f(x)$ :



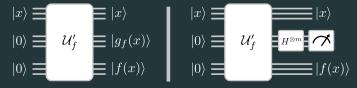
Lots of time and space overhead!

**Goal:**  $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$ 

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let  $\mathcal{U}'_f$  be a unitary generating garbage bits  $g_f(x)$ :



Can we "measure them away" instead?

Measure garbage bits  $g_f(x)$  in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$ 

Measure garbage bits  $g_f(x)$  in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$ 

In general useless: unique phase  $(-1)^{h \cdot g_f(x)}$  on every term.

Measure garbage bits  $g_f(x)$  in Hadamard basis, get some string h. End up with state:

$$\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$$

In general useless: unique phase  $(-1)^{h \cdot g_f(x)}$  on every term.

But after collapsing onto a single output:

 $[(-1)^{h \cdot g_f(x_0)} |x_0\rangle + (-1)^{h \cdot g_f(x_1)} |x_1\rangle] |y\rangle$ 

Measure garbage bits  $g_f(x)$  in Hadamard basis, get some string h. End up with state:

$$\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$$

In general useless: unique phase  $(-1)^{h \cdot g_f(x)}$  on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$ 

Verifier can efficiently compute  $g_f(\cdot)$  for these two terms!

Measure garbage bits  $g_f(x)$  in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$ 

In general useless: unique phase  $(-1)^{h \cdot g_f(x)}$  on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$ 

Verifier can efficiently compute  $g_f(\cdot)$  for these two terms!

Can directly convert classical circuits to quantum!

Measure garbage bits  $g_f(x)$  in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$ 

In general useless: unique phase  $(-1)^{h \cdot g_f(x)}$  on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$ 

Verifier can efficiently compute  $g_f(\cdot)$  for these two terms!

Can directly convert classical circuits to quantum! 1024-bit x<sup>2</sup> mod N costs only 10<sup>6</sup> Toffoli gates.